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ABSTRACT 

Osteoporosis is a common bone disease that increases risk of low-trauma 

fractures associated with substantial morbidity, mortality, and financial costs. Clinically, 

osteoporosis is defined by low bone mineral density (BMD). BMD explains 

approximately 60-70% of the variance in bone strength. The remainder is due to the 

cumulative and synergistic effects of other factors, including trabecular and cortical bone 

micro-architecture. In vivo quantitative characterization of trabecular bone (TB) micro-

architecture with high accuracy, reproducibility, and sensitivity to bone strength will 

improve our understanding of bone loss mechanisms and etiologies benefitting 

osteoporotic diagnostics and treatment monitoring processes. 

The overall aim of the Ph.D. research is to design, develop and evaluate new 3-D 

imaging processing algorithms to characterize the quality of TB micro-architectural in 

terms of topology, orientation, thickness and spacing, and to move the new technology 

from investigational research into the clinical arena. Two algorithms regarding to this 

purpose were developed and validated in detail – (1) star-line-based TB thickness and 

marrow spacing computation algorithm, and (2) tensor scale (t-scale) based TB topology 

and orientation computation algorithm.  

The TB thickness and marrow spacing algorithm utilizes a star-line tracing 

technique that effectively accounts for partial voluming effects of in vivo imaging with 

voxel size comparable to TB thickness and also avoids the problem of digitization 

associated with conventional algorithms. Accuracy of the method was examined on 

computer-generated phantom images while the robustness of the method was evaluated 

on human ankle specimens in terms of stability across a wide range of resolutions, repeat 

scan reproducibility under in vivo condition, and correlation between thickness values 

computed at ex vivo and in vivo resolutions. Also, the sensitivity of the method was 

examined by its ability to predict bone strength of cadaveric specimens. Finally, the 
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method was evaluated in an in vivo human study involving forty healthy young-adult 

volunteers and ten athletes. 

The t-scale based TB topology and orientation computation algorithm provides 

measures characterizing individual trabeculae on the continuum between perfect plate 

and perfect rod as well as individual trabecular orientation. Similar to the TB thickness 

and marrow spacing computation algorithm, accuracy was examined on computer-

generated phantoms while robustness of the algorithm across ex vivo and in vivo 

resolution, repeat scan reproducibility, and the sensitivity to experimental mechanical 

bone strength were evaluated in a cadaveric ankle study. And the application of the 

algorithm was evaluated in a human study involving forty healthy young-adult volunteers 

and ten patients with SSRI treatment.  

Beside these two algorithms, an image thresholding algorithm based on the class 

uncertainty theory is developed to segment TB structure in CT images. Although the 

algorithm was developed for this specific application, it also works effectively for general 

2-D and 3-D images. Moreover, the class uncertainty theory can be utilized as adaptive 

information in more sophisticated image processing algorithms such as Snakes, ASMs 

and graph search. 
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CHAPTER 1.  INTRODUCTION  

Trabecular bone (TB) is a network of interconnected plates and rods that 

dominates near the ends of long bones and in the axial skeletal bones, e.g., proximal 

femur and vertebrae. In order to adapt to stresses in our daily life, TB constantly 

remodels through a dynamic bio-equilibrium of bone formation (osteoblast) and 

resorption (osteoclast) (Wolff’s Law [1]). In osteoporosis, this dynamic biological 

equilibrium between bone formation and resorption is perturbed where the bone 

formation lags behind the resorption, leading to net bone loss and structural deterioration. 

It leads to increased skeletal fragility, enhancing the risk of low-trauma osteoporotic 

fracture associated with substantial morbidity, mortality, and financial costs [2]. 

Approximately, 30% of postmenopausal white women in the United States suffer from 

osteoporosis [3] and the prevalence in Europe and Asia is similar. In the United States 

alone, 10 million individuals are estimated to have osteoporosis and almost 34 million 

more have low bone mass, a condition called “osteopenia,” placing the latter at high risk 

of developing osteoporosis.  

Clinically, osteoporosis is defined by low bone mineral density (BMD) measured 

using dual-energy X-ray absorptiometry (DXA). However, BMD only explains about 

60% to 70% of the variance in bone strength [4, 5], while the remaining variance is due 

to the cumulative and synergistic effects of various factors, including bone macro- and 

micro-architecture, tissue composition, and micro-damage [6, 7]. Most osteoporotic 

fractures occur at sites rich in TB (vertebrae, radius, proximal femur), which leads to the 

notion of TB bone quality, chief among which is architecture as a determinant of TB 

strength. Several clinical studies [8-12] have observed results supporting the role of TB 

architectural quality in determining skeletal strength. Recent advances in imaging 

technologies including magnetic resonance imaging (MRI) [4, 13-18], high resolution 

peripheral quantitative computed topography (HR-pQCT) [19-21], and multi-row 

detector computed tomography (MD-CT) [22-29] offer opportunities to segment TB 
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networks in vivo at peripheral sites. However, in vivo TB imaging is hampered by the 

limited signal-to-noise ratio (SNR) that precludes voxel sizes much smaller than 

trabecular thickness (100-150μm); therefore, resulting images are inherently fuzzy. Thus, 

most quantitative approaches designed for TB micro-architectural analysis using 

histologic [30] or micro-CT (μ-CT) imaging [31, 32] techniques fail in the presence of 

partial volume averaging common at the limited resolution regime achievable under in 

vivo conditions. These challenges and necessities open an avenue for research programs 

leading to new solutions for quantitative assessment of the quality of complex quasi-

random TB micro-architecture where individual trabeculae may be segmented only with 

significant partial voluming. Although several novel research efforts have been reported 

in the literature, a gold standard solution with consensus has yet to emerge and there are 

significant opportunities to advance quantitative TB micro-architectural analytic 

techniques available in literature. This overall aim of the research designed in the current 

PhD thesis is to design, develop and evaluate new quantitative techniques for 

characterization of the integrity of human TB micro-architectural quality at in vivo 

imaging resolution as described in the following chapter. 

1.1 Specific Aims 

It has been repeatedly demonstrated that the TB network consists of individual 

trabecular bone plates and rods and their balance plays an important role in determining 

the integrity and strength of a TB network [17, 33-35]. Saha et al. [36] introduced the 

notion of characterizing the plate and rod geometry of individual trabeculae using digital 

topology [37, 38], but a major limitation of the method is that resulting classifications are 

inherently discrete, failing to distinguish between narrow and wide plates. The balance 

between plates and rods changes gradually during bone formation at younger ages [39], 

as well as during bone loss [11] or anti-resorptive treatment [40], and, therefore, demands 

classification of TB geometry/topology on the continuum between a perfect plate and a 
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perfect rod. One of the aims of the current research design is to develop a computation 

solution to quantitatively characterize the topology of individual trabeculae on the 

continuum between a perfect plate and perfect rod at in vivo imaging resolution. Later, 

Saha et al. developed a volumetric topological analysis algorithm (VTA) [41] 

characterizing the topology of individual trabeculae on the continuum between a perfect 

plate and a perfect rod. Although VTA provides an effective measure of TB micro-

architecture from in vivo image, its premise is built on digital topology and path 

propagation approaches making it more suscceeptible to digitization errors and 

cumulative errors incurred during path propagation. Also, VTA ignores some important 

information related to structural orientation and anisotropy. 

TB is a highly anisotropic structure, so along with the topology properties, 

researchers also use the orientation property of TB network to determine its quality. 

According to the study of Oden et al. [42], mean intercept length along the specimen’s 

primary axis is strongly associated with failure stress (                ) and 

concluded that orientation is a strong determinant of trabecular strength. Siffert et al. [43] 

reported that incorporation of architectural measures increases predictability of bone 

mass for observed bone strength from 65% to 94%. Odgaard et al. [44] provided 

quantitative evidence of Wolff’s law by showing that stress and fabric tensors coincide. 

Evidence exists that during aging and osteoporosis structural anisotropy increases [39]. 

Thus, the measurement about the trabecular bone orientation will be a meaningful 

indication for TB structure strength. The current thesis will develop a new method for 

characterization of TB orientation properties using a direct orientation measure of 

individual trabeculae.  

Besides topology and orientation, TB thickness and marrow spacing play an 

important role in TB quality analysis. The TB thickness property represents the length of 

the shortest path through a bone point within the TB structure; thus the TB thickness is 

directly related to the bone mass and its strength. Just as the opposite of TB thickness, 
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marrow spacing measures of the size of space between the TB networks. Specifically, 

stronger TB will be characterized with smaller marrow spacing and larger TB thickness. 

One of the aims of this PhD thesis is to develop new methods to accurately measure TB 

thickness and spacing at the level of individual trabeculae.  

Recently, Saha et al. [45, 46] conceived a local 3D morphometric index called 

tensor scale (t-scale) – a local morphometric scale using an ellipsoidal model that yields a 

unified representation of local structure size, orientation, and anisotropy. The 

fundamental principle of t-scale in 3D is to represent a local structure by fitting a largest 

possible ellipsoid in the homogeneous region. The unique property of t-scale is that the 

ellipsoid’s shape, orientation and size simultaneously determine the topology (plates 

versus rods), orientation, thickness and marrow spacing of trabeculae. The overall aim of 

this Ph.D. thesis is to design, develop and evaluate new 3D image processing techniques 

to quantitatively characterize the quality of TB micro-architecture in terms of topology, 

orientation, thickness and marrow spacing, and to move the new technologies from 

investigational research into the clinical arena. This overall aim will be accomplished 

by undertaking the following specific aims: 

Aim 1 Development of a star-line-based algorithm for an accurate and robust measure of 

TB thickness and marrow spacing at in vivo resolution. 

Aim 2 Development of algorithms for t-scale-based quantitative analyses of TB micro-

architecture at in vivo resolution. 

Aim 2a Development of algorithms for efficient computation of t-scale for in vivo 

TB images. 

Aim 2b Development of algorithms for computing different t-scale-based TB 

micro-architectural measures, including (a) structural plate-width and (b) 

structural orientation. 

Aim 3 Evaluation of the accuracy of the different TB architectural measures using 

computer-generated phantom images with known structural thickness or width. 
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Aim 4 Evaluation of the robustness of the different TB architectural measures in terms of 

stability across a wide range of resolutions, repeat scan reproducibility under in 

vivo conditions, and correlation between the measures computed at ex vivo (µ-CT) 

and in vivo (MD-CT) resolutions. 

Aim 5 Evaluation of the sensitivities of the different TB architectural measures by their 

abilities in predicting bone strength of cadaveric specimens. 

Aim 6 Examination of the application of the new algorithms detecting the effects of bone 

loss and anti-resorptive treatment with existing in vivo MD-CT data and 

comparison of the results with MD-CT-based BMD measures. 

The above aims will offer solutions for characterization of the integrity of TB 

micro-architecture in terms of topology, orientation, thickness and marrow spacing that is 

accurate, reproducible, and sensitive. The new methods will facilitate detection of TB 

alteration among different study groups with known differences bone metabolism. These 

claims will be evaluated by examining the following hypotheses: 

Hypothesis 1: The TB architectural measures obtained using the above methods 

from 3D images are more robust and have superior repeat scan reproducibility than 

conventional morphometric and topological parameters. 

Hypothesis 2: The TB architectural measures obtained using the above methods 

from 3D images are more sensitive in detecting early remodeling changes reflecting 

either disease progression or regression in response to therapy than conventional 

morphometric and topological parameters. 

Hypothesis 3: The TB architectural measures from the above methods provide 

better discrimination among different TB strength than different BMD measures.  

The aims have been accomplished and the results are published in [47, 48]. The 

Ph.D. research project involves research works related to the following major areas – (1) 

trabecular bone properties, (2) TB thickness and marrow spacing computation, (3) t-scale 

theory, (4) image thresholding, (5) skeletonization and feature propagation. The overall 
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methods, strategy and experimental plans will be introduced in the following subchapters. 

A brief literature survey on each of the above research topics is presented, with emphasis 

on the contribution from the current research study. 

1.2 Trabecular Bone, Osteoporosis and Diagnosis 

Trabecular bone is a network of interconnected plates and rods fused to and 

encased by a thin cortex. It is predominant in the axial skeleton and near the joints of long 

bones. In the human skeleton, trabeculae are typically 100-150 μm thick, whereas the 

thickness of the cortex varies between 1 and 5 mm. In the adult skeleton bone constantly 

remodels through complex interplay between bone formation by osteoblasts and bone 

resorption by osteoclasts. In osteoporosis, this dynamic equilibrium between bone 

formation and resorption is perturbed, leading to bone loss and structural deterioration, 

both of which increase fracture risk. Most osteoporotic fractures occur at skeletal sites 

rich in TB, which remodels up to an order of magnitude faster than cortical bone. The 

majority of osteoporotic fractures occur in older women, due to the increased remodeling 

rate associated with a net negative bone balance after menopause [49]. Approximately 

30% of post-menopausal white women in the United States have osteoporosis [50] and 

the prevalence in Europe and Asia is similar.  

1.2.1 Bone Density and Trabecular Architecture 

The clinical definition of osteoporosis refers to a condition in which bone mineral 

density (BMD) is at least 2.5 standard deviations (also referred to as “T-score”) below the 

mean of the young adult population [51]. BMD derived from quantitative CT or dual-

energy X-ray absorptiometry (DXA) is an apparent density measured as the amount of 

mineral per unit volume (for CT) or area of tissue (for DXA), expressed in g/cm
3
 or 

g/cm
2
, respectively. The latter measure has further limitations as it represents a density 

obtained from projection imaging and thus depends on bone size. The BMD paradigm 

rests on the notion that ultimate strength scales as a power of BMD (with an exponent of 
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approximately 2[52]) and further, that the intrinsic material strength remains invariant 

(i.e., that “normal” and osteoporotic bone are no different in their ultra-structural and 

chemical make-up). It may be reasonable to state that, as long as both structure and 

intrinsic material properties remain unaltered during bone loss, BMD is an accurate 

predictor of the bone’s mechanical competence. In the laboratory, it has been shown that 

BMD explains, on the average, about 60% of bone strength as estimated from a meta-

analysis of 38 studies investigating some measure of bone strength [4]. The data 

demonstrate the dramatically reduced strength resulting from loss of entire TB elements 

as opposed to homogeneous thinning for the same amount of bone loss. These findings 

emphasize the importance of architecture, in particular the maintenance of structural 

connectivity, which can be assessed by evaluating the topological changes that 

accompany bone loss and treatment [53]. The lack of changes in BMD values in response 

to treatment with antiresorptive therapy lends further support to the role of architecture in 

conferring fracture resistance. The Multiple Outcomes of Raloxifene Evaluation Trial 

[54] involving 7,700 women with osteoporosis showed that only 4% of the reduction in 

fracture incidence could be explained by changes in BMD. In a trial on the efficacy of 

nasal-spray salmon calcitonin, Chestnut et al. [55] found that treatment decreased 

fracture risk by 36% while BMD increased by a mere 1.2%. The discrepancy between the 

two measures was conjectured to be the consequence of antiresorptive therapy induced 

reduction of bone turnover [56] because rapid bone remodeling is known to result in a 

less connected and thus mechanically compromised network [57]. Siffert et al. [43] 

reported that incorporation of architectural measures increases predictability of bone 

mass for observed bone strength to 94% from 65%. Odgaard et al. [44] provided 

quantitative evidence of Wolff’s law by showing that stress and fabric tensors coincide. 

Evidence exists that during aging and osteoporosis structural anisotropy increases [39]. In 

the vertebrae, for example, preferential loss of transverse trabeculae in women renders 

the bone more anisotropic and more prone to failure by buckling [58]. Certain pathologic 
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processes such as the action of supraphysiologic levels of corticosteroid, primarily lead to 

homogeneous thinning and during the early phase of atrophy would not significantly 

reduce connectivity [59]. Hwang et al. [60] found that BV/TV (BV/TV=sum of the bone 

volume fraction of all voxels divided by the total number of voxels) accounts for 57% of 

the variations of Young’s modulus, whereas an additional 34% could be explained by 

incorporation of architectural parameters. 

These findings are not surprising in that they merely reflect that bone cannot defy 

general engineering principles that dictate that the arrangement and shape of the 

structural elements determine the critical load a structure can sustain. The dichotomies 

between density and strength have spurred the search for other predictors of bone 

strength and fracture risk, notably what has been loosely denoted bone quality, a term 

collectively referring to various parameters, including structure, matrix and mineral 

properties. 

1.2.2 Recent Study of Osteoporosis Imaging 

The conventional tool for assessing TB structure is histomorphometry from bone 

biopsies (see, for example, [61]). The method yields two-dimensional representations of 

the TB architecture from which the third dimension is obtained in an inferential manner 

using the mathematical tools of stereology [62, 63]. Since TB networks are inherently 

three-dimensional, 2-D histomorphometric approaches have, in recent years, been 

superseded by direct 3-D analysis of biopsy specimens imaged by μ-CT (see, for example, 

[63] and references cited). Commercial desktop μ-CT instruments, available from several 

manufacturers, are now indispensable research tools. They have maximum resolution on 

the order of 8 μm isotropic, therefore providing detailed insight into TB micro-

architecture. Although the method is nondestructive, it is invasive, since bone biopsies 

are required, but rarely indicated clinically and not suited for following patients 

longitudinally to evaluate treatment response. More recently, the μ-CT cone-beam 

scanning technology has been incorporated into dedicated CT systems designed for high-
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resolution imaging of TB at the distal extremities, i.e., the distal radius and tibia (see, for 

example, [64, 65]). 

In 2012, Link [66] did an extensive survey of current state-of-the-art imaging 

techniques in the diagnosis of osteoporosis. Compared to traditional BMD measurements, 

which are standardized and part of normal clinical routine, techniques to measure bone 

quality in vivo are more challenging and are research topics, such as the previously 

mentioned magnetic resonance (MR) imaging, multi-row detector CT (MD-CT), 

quantitative ultrasound (US) and high-resolution peripheral quantitative (HR-pQ) CT.  

HR-pQCT [19, 67-70] provides higher signal to noise ratio (SNR) and spatial 

resolution compared to MRI and MD-CT. Also, the effective radiation dose is 

substantially lower compared to whole-body MD-CT and the dose primarily does not 

involve critical, radiosensitive organs. The scan time is approximately 3 minutes for each 

scan of the tibia or femur. One other advantage of the system is that it allows acquisition 

of BMD, trabecular and cortical bone architecture at the same time. However, this 

technique is limited to peripheral skeletal sites, and therefore can provide no direct 

insight into bone quality in the lumber spine or proximal femur-common sites for 

osteoporotic fragility fracture [70]. Moreover, it has a limited life span and motion 

artifacts sometimes limit morphologic analysis of the bone architecture.  

MD-CT is standard in clinical practice, with superior spatial resolution compared 

with previous spiral CT scanners. However, during the imaging of trabecular bone 

structure, the spatial resolution is still limited (0.25-0.3 mm
3
 [71] compared to 0.05-0.2 

mm in diameter for individual trabeculae) leading to substantial partial voluming effects. 

Despite that fact, it is been shown that MD-CT correlates with those determined on 

contact radiographs from histologic bone sections and micro-CT [72, 73]. An advantage 

of MD-CT over HR-pQCT is access to central regions of the skeleton such as the spine 

and proximal femur, sites at risk for fragility fractures; however at the same time, it 

requires high radiation exposure [74]. Clinical studies have demonstrated that MD-CT-
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derived structure measures at the proximal femur and lumbar spine improve 

differentiation between osteoporotic patients with proximal femur fractures and healthy 

controls [75], as well as individuals with and those without osteoporotic spine fractures 

[76]. In addition, the technique was shown to be well-suited for monitoring teriparatide-

associated changes of vertebral microstructure [74]. Recently, Keaveny et al. [77-79] 

used finite element analysis to study vertebral body strength and therapy-related changes 

in multidetector CT data sets of the spine and proximal femur; the results of this work 

suggested improved monitoring of treatment effects compared with DXA and greater 

sensitivity in fracture risk assessment. 

Advances in MR imaging software and hardware, including 3-T imaging and 

improved coil design, have allowed substantially enhanced trabecular bone architecture 

imaging. A number of clinical studies were performed that demonstrated that MR 

imaging–derived structure measures provided additional information to BMD in 

differentiating individuals with from those without fragility fractures [80-82]. In addition 

to postmenopausal women, trabecular bone was studied with MR imaging in 

hypogonadal men, patients with cardiac and renal transplants, and patients with renal 

osteodystrophy [33, 83, 84]. 

A recent meta-analysis on osteoporosis screening found that both DXA and 

calcaneal quantitative ultrasound (US) could be used to predict fractures in an older 

patient population but that the correlation between the two techniques was low [85]. 

Quantitative US is a low-cost technique performed with dedicated scanners acquiring 

data mostly at the calcaneus. The strong power of quantitative US to predict osteoporotic 

fractures has  suggested that the technique could be well-suited to assess bone quality 

[86]. However, there has been a proliferation of quantitative US devices that are 

technologically diverse, measuring and reporting variable bone parameters in different 

ways [87]. While quantitative US has been shown to differentiate individuals with from 
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those without fragility fractures [88, 89] and to predict fracture risk [90], it has not been 

established to diagnose osteoporosis such as DXA has [87]. 

1.2.3 Image-based Approaches to TB Architecture 

 

Figure 1    3D rendered of a trabecular bone sample. The bone sample displayed on the 
right predominantly contains rod-like trabeculae while the left one on the right 
mostly consists of plates. 

Topology and geometry: The striking difference in topological make-up of bone 

from the same anatomic site is illustrated in Figure 1 [31] for predominantly plate- and 

rod-like trabeculae in the calcaneus. Various topological and geometric properties of TB 

networks for characterizing TB architecture have been reported in the literature [13-15, 

31, 38, 60, 63, 91-106]. Parfitt [91] conceived a parallel interconnected plate model of 

TB yielding bone area fraction, TB volume fraction, TB spacing and TB number from 2D 

histomorphometric sections. This approach has also been adopted for the analysis of MR 

images [13, 107]. Vesterby [94, 95] conceived a new stereologic parameter, called star 

volume, which is the average volume of an object region that can be seen from a point 
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inside that region un-obscured in all directions. This approach provides an effective 

measure of marrow space geometry, which increases as a result of osteoclastic resorption. 

Hahn et al. [97] introduced the “Trabecular Bone Pattern factor” (TBPf) which captures 

TB connectivity in terms of convexity property of TB surface defined as ratio of the 

differences in perimeter and area under dilation. Hildebrand et al. [31, 100] developed a 

3D structure model index (SMI), a function of global plate-to-rod ratio, based on the 

observation that the rate of change of volume with thickness for a plate is different from 

that for a rod. Majumdar et al. [14, 15] have adopted apparent TB number (app. TB.N), 

apparent TB thickness (app TB.Th), apparent TB spacing (app TB.Sp) and fractal 

dimension to quantify TB structural quality. Several architectural parameters of TB 

networks were introduced utilizing autocorrelation techniques [60, 102] by exploiting the 

quasi-regularity of TB networks. Stampa et al. [104] introduced two new measures, 

namely, relative plate and relative rod volume (rPV and rRV, respectively) using TB 

voxel counts in 3 3 planes around each TB voxel. Some investigators [92, 96] have 

analyzed the nodes and free ends of TB and others [99] have used ridge number density 

measuring the bone skeletal length. Feldkamp et al. [93] first showed that the makeup of 

TB networks can be expressed in terms of topological entities such as the 3D Euler 

number. Gordon et al. [98] introduced a connectivity index using the numbers of nodes, 

free ends, isolated points, and the network length. By means of a skeleton line graph 

analysis method of high-resolution MR images, Pothuaud et al. [63] explored whether the 

network topology in osteoporosis was different from that in osteoarthritis. In a later work 

[103], using a multivariate model, the same group of researchers studied the strengths of 

topological parameters and bone volume fraction to predict TB’s mechanical behavior. 

Although quantification of network topology on the basis of the Euler-Poincaré 

characteristic can provide useful insight, the method is limited in its ability to quantify 

the topological implications of bone resorption. The potential fallacy of the Euler number 

is a measure of bone resorption becomes evident when we consider the consequences of 
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non-homogeneous thinning. Whereas perforation of a surface increases the number of 

loops, disconnection of a rod-like element removes a loop. Thus, although both processes 

affect the topology of the structure, they do so in opposite ways. The result could thus 

have very little or no effect on the Euler number. 

Structural anisotropy: TB remodels in response to the stresses to which it is 

subjected [1] in such a manner that the trabeculae become aligned with the major stress 

lines, thus leading to a highly anisotropic network. Structural anisotropy of TB was first 

quantified by Whitehouse who showed in sections of TB that by plotting the mean 

intercept length (MIL) in the marrow spaces in a polar diagram, an ellipse is traced [108]. 

In a direct extension of this approach, Harrigan [109] proposed a general method based 

on analyzing the three faces of a cubic specimen for three-dimensional mapping of 

structural anisotropy, yielding the Eigenvalues and Eigenvectors of the mean intercept 

ellipsoid. Chung et al. [107] applied this approach to map the TB fabric tensor of bovine 

tibia, human vertebrae, and radial bone on the basis of 3D μ-MRI images. Recently, 

Gomberg et al. [110] developed a direct method called digital topological analysis-based 

orientation (DTAO) analysis to yield regional orientation and anisotropy after identifying 

the topological type (plates and rods) of each trabecula and observed a clear orientation 

difference between the medial and lateral sides of axial cross sections in μ-MRI images 

of the human distal wrist. 

TB thickness and spacing: The thickness of TB is an important architectural 

determinant of bone strength [111]. Corticosteroid exposure, for example, is well known 

to cause TB thinning [59]. Conversely, treatment with anabolic agents, such as 

parathyroid hormone, causes TB thickening. The classical approach toward measuring 

TB thickness is based on histomorphometry of bone biopsies and involves measuring 

bone perimeter and area [91]. Hildebrand et al. [100] introduced a model-independent 3D 

method to compute TB thickness at any bone location in a binary image as the diameter 

of the largest inscribed sphere containing that location. Laib et al. [99] used the standard 
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deviation of apparent intra-individual distribution of TB separations as a discriminator of 

fractures. Gordon et al. [98] defined mean hole-area in cross-sectional images of TB by 

dividing total marrow area by the number of holes. This parameter is essentially a 

measurement of average marrow-hole size in 2D. 

1.3 Digital Topological Analysis 

In 1996 Saha and Chaudhuri [37] conceived the theory and algorithms to compute 

local topological parameters, i.e. the number of objects, tunnels, and cavities, in the 

      neighborhood of an object voxel after the hypothetical transformation of the 

latter to a background voxel. The topological parameters permit unambiguous 

determination of the local topological classes (surface, curve, and junction) in the 

skeletonized representation [112] of a structure. This algorithm was subsequently applied 

to digital images of TB [38, 106]. In this work, DTA was showed on the basis of in vivo 

MRI structure analysis that the etiology of bone loss proceeds via a conversion of TB 

plates to rods and eventual disconnection of the latter structure elements [101]. Unlike in 

the approach by Pothuaud et al. [63] in which the TB structure is reduced to a line 

skeleton, Saha et al.’s method preserves TB plates by skeletonizing the structure such 

that plates are reduced to surfaces and rods to curves. Two composite parameters, the 

surface-to-curve ratio (S/C) and erosion index (EI) were derived from individual 

topological parameters obtained using digital topological analysis (DTA). EI, for example, 

was defined as the ratio of the sum of parameters expected to increase upon osteoclastic 

resorption, divided by the sum of parameters expected to decrease secondary to such 

processes. 

Despite the power of local network topology for characterizing the quality of TB 

architecture, the method has limitations: (1) binarization: DTA requires binary 

segmentation into bone and bone marrow voxels introducing significant errors at in vivo 

resolution where most bone voxels are only partially occupied. (2) hard classification: the 



www.manaraa.com

15 
 

 

1
5
 

method classifies a trabeculae as a plate (S) or a rod (C) and, therefore, is unable to 

distinguish among trabeculae constituting narrow and wide plates. As a result, the method 

would be a less effective discriminator at the early stage of conversion of trabeculae from 

plates to rods – an etiology of osteoporotic bone loss [35, 113]. Moreover, such a 

classification is highly resolution-dependent. These limitations do not apply only to DTA, 

but equally to most other methods described above. Moreover, the majority of structure 

analysis methods are capable of providing only global measures and, therefore, cannot be 

used to explore the spatial distribution of network architecture. 

1.4 TB Thickness and Marrow Spacing Computation 

The classical approach of measuring trabecular thickness is based on 

histomorphometry of transiliac bone biopsies [61]. The emergence of imaging 

technologies such as micro CT (µ-CT) [114] enables reconstruction of high resolution 

three-dimensional (3-D) images calling for more elaborate techniques for computing TB 

thickness. Recently, in vivo imaging techniques including magnetic resonance (MR), high 

resolution peripheral quantitative CT (HR-pQCT), and multi-row detector CT (MD-CT) 

have become promising modalities for high quality TB imaging at peripheral sites [23, 25, 

76] that avoid the problems of invasive bone biopsies. Therefore, an accurate and robust 

algorithm of computing TB thickness and marrow spacing that is applicable to in vivo 

imaging would be useful as an effective indicator of quantitative bone quality for clinical 

trials evaluating fracture risks under different clinical conditions.  

Several methods for computing TB thickness and marrow spacing have been 

reported [115-118]. Hildebrand et al. [115] presented a model-independent binary 

approach involving inscribing spheres into the target TB structure where trabecular 

thickness at any location is computed as the diameter of the largest inscribed sphere 

containing that location. A star-volume-based algorithm which calculates the mean 

volume of all parts of an object that can be seen un-obscured from any point within the 
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target object, has been developed and used to measure TB marrow spacing in binary 

images [117, 118]. These approaches are well-suited for high-resolution images that can 

easily be segmented but it is bound to fail when significant partial voluming is present. 

Saha et al. [116] overcome this issue of partial voluming at low resolution in TB 

thickness computation by introducing the use of fuzzy distance transform and a global 

compensation. 

1.5 Tensor Scale 

Scale [119-121] may be thought of as the spatial resolution, or more generally, a 

range of resolutions needed to ensure a sufficient yet compact representation of target 

information [119]. Scale plays an important role in image processing applications. Witkin 

[120] and Koenderink [121] mathematically formulated the concept of scale in the form 

of scale-space theory. Discrete scale-space representations [122] have been used in 

several imaging applications, including segmentation [123], clustering [124], 

classification [125], and structural analysis [126]. Although scale-space image 

representations have provided significant insight, it is not obvious – (1) how to unify the 

information from images at different scales, and (2) how to identify the optimal scale at 

each individual image point. A knowledge of “local scale” [127-130] would allow us to 

spatially tune the neighborhood size in different processes leading to selection of small 

neighborhoods in regions containing fine detail or near an object boundary, versus large 

neighborhoods in deep interiors [45]. Also, local scale would be useful in developing an 

effective space-variant parameter controlling strategies [46].  

The notion of local morphometric scale was introduced using a spherical model in 

[45, 46] and was applied to different image processing algorithms; see [131] for a survey 

on local scale. Although the preliminary results have demonstrated effectiveness of this 

notion of local scale in different image processing applications, a major limitation of the 

spherical model is that it ignores orientation and anisotropy of local structures. Recently, 
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Saha et al. [131] proposed a new local morphometric scale, called “tensor scale” (t-scale) 

using an ellipsoidal model which gives a unified local parametric representation of 

structure size, orientation, and anisotropy. T-scale is a valuable feature associated with 

every image point and is potentially useful in several image processing and computer 

vision applications, especially medical imaging applications where local structural and 

scale information could play important roles. A few works have been reported on 

representing local orientation using gradient structure tensor [132] and its applications 

have been demonstrated in image filtering [132] and adaptive image morphological 

analysis [133]. Although structure tensor is a useful concept and efficiently provides 

orientation information near edges, it primarily captures information derived from local 

gradient fields and may not directly relate to local structure geometry that yields shape 

and size or thickness information. For example, in a homogeneous region, structure 

tensor may not carry meaningful information related to local structure. Here, we 

formulate t-scale from a geometric perspective where, at each image point, the tensor 

captures information related to local structure geometry. 

Effectiveness of t-scale in image segmentation [110], registration [134], filtering 

[131] and also in quantifying local morphometry in complex quasi-random networks of 

trabecular bone [36, 135] have been studied. Andalo [136, 137] presented an efficient 

computational solution for t-scale and demonstrated its usefulness in detecting salient 

points on a given contour. As mentioned in previous sections, in TB quality analysis, t-

scale computation is able to provide information on TB plate and rod classification, 

orientation analysis, surface curve ratio (SCR), and TB thickness and marrow spacing. 

All those are closely connected to TB quality and will be discussed in detail in later 

chapters. 
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1.6 TB Segmentation 

Automatic selection of a robust and accurate threshold parameter has remained a 

challenge in image segmentation. Over the past five decades, many automatic threshold 

selection methods have been reported in the literature [138-157]. In the late 80’s, Sahoo 

et al. [138] published a survey of optimum thresholding methods while Lee et al. [139] 

reported results of a comparative study of several thresholding methods. Glasbey [140] 

reported results of another comparative study involving eleven histogram-based 

thresholding algorithms. A relatively recent survey of thresholding algorithms for change 

detection in a surveillance environment has been presented by Rosin and Ioannidis [158]. 

Among early work on automatic thresholding, Prewitt and Mendelson [141] suggested 

using valleys in a histogram, while Doyle [142] advocated the choice of median. Otsu 

[143] developed a thresholding method maximizing between-class variance. Tsai [146] 

proposed a choice of threshold at which resulting binary images have the identical first 

three moments where the i-th moment is defined by the sum of pixel intensity values 

raised to the i-th power. Later works on thresholding methods have utilized entropy of 

original and thresholded images to construct an optimization criterion. For example, Pun 

[147] maximized the upper bound of posterior entropy of histogram. Wong and Sahoo's 

method [148] selects the optimum threshold that maximizes posterior entropy subjected 

to certain inequality constraints characterizing the uniformity and shape of segmented 

regions. Pal and Pal [149] utilized the joint probability distribution of neighboring pixels 

which they further modified [150] using a new definition of entropy. Kapur et al. [151] 

proposed a thresholding method by maximizing the sum of entropies of segmented 

regions and a similar method was reported by Abutaleb [152] that maximizes 2D entropy. 

The method by Brink [153] maximizes the sum of entropies computed from two 

autocorrelation functions of thresholded image histograms. Li and Lee's method [154] 

minimizes relative cross entropy or Kullback-Leibler distance between original and 

thresholded images. Kitler and Illingworth [155] developed a thresholding method by 
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minimizing segmentation errors defined from an information-theoretic perspective, while 

Dunn et al. [156] used a uniform error criterion. Leung and Lam [157] developed a 

method that maximizes segmented image information derived using an information-

theoretic approach and demonstrated that their method is better than the methods based 

on minimum and uniform errors [155, 156]. Sahoo et al. [159] developed a thresholding 

method using Renyi’s entropy that includes both maximum entropy as well as entropic 

correction methods. Zenzo et al. [160] introduced the notion of “fuzzy entropy” and 

demonstrated its application to image thresholding using a functional cost minimization 

approach. Oh and Lindquist [161] developed an indicator kriging based two-class 

segmentation algorithm for two- and three-dimensional images characterized by a 

stationary and isotropic two-point covariance function. Recently, several image 

thresholding methods [162, 163] have been reported using Tsallis entropy [164] that 

generalizes the Boltzmann-Gibbs-Shannon statistics describing thermo-statistical 

properties of non-extensive systems. Tizhoosh [165] developed an image thresholding 

algorithm using type II fuzzy subsets where the range of membership function is the 

power of [0,1] interval. Bazi et al. [166] developed a two-class image thresholding 

method using expectation-maximization under the assumption of a generalized Gaussian 

distribution for each class. Image thresholding algorithms have also been studied in the 

context of document and handwritten image processing [167-172]. 

1.7 Skeletonization and Back Propagation 

Since t-scale is a local property, the measures at an individual voxel location can 

be directly computed from its local t-scale. However, it can be shown that these measures 

suffer from edge artifacts when the target voxel is far from the skeleton due to the failure 

of covering the entire geometry of the local structure within its t-scale. In order to 

overcome this problem, skeletonization is done on TB structure to obtain the center line, 

then the measures are evaluated at those center points to avoid the edge artifacts, and 
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finally, the measures are back-propagated to all TB voxels. Specifically, a surface 

skeletonization is computed using the algorithm by Saha et al. [37] and the feauture 

propagation is accomplished using the classical algorithm introduced in [41]. 

The skeletonization process is done in two steps: primary and secondary 

skeletonization. Primary skeletonization iteratively erodes bone voxels from the current 

outer layer of a TB object while preserving its topology and so-called “shape.” In order to 

preserve TB object topology, only (26, 6)-simple voxels [173, 174] are considered for 

erosion. Both surface- and arc-like shape voxels [112] are preserved during the erosion 

process. The output of primary skeletonization may contain two-voxel thick surfaces and 

curves. Extra thick voxels [112] are removed using an extra iteration referred to as 

secondary skeletonization. For noise removal, the basic idea here is to distinguish skeletal 

branches contributed by true geometric features in the original object from those 

originated by noisy bumps or dents, often, common in digital images.  

After the t-scale-based measures are evaluated at the skeleton points, the last step 

would be propagating the measures from skeleton points to the entire TB volume for 

statistical analysis. Bonnassie et al. [175] proposed a feature propagation method from 

skeletal voxels to entire volume by copying feature values from a skeletal voxel   to all 

voxels within the maximal ball centered at  . However, as mentioned by the authors, the 

method suffers from the fact that final results depend on the order in which skeletal 

voxels are processed. The solution we applied is the classic propagation algorithm: 1) 

initiate the measures at each voxel   on the skeletal scale   of   and 2) at a non-skeletal 

voxel  , inherit the measures from its nearest skeletal voxel. The algorithms will be 

discussed in detail in the following chapters. 

1.8 Experimental Plan 

The experiments were designed following the guidelines of Aims 3-6. 

Specifically, we performed the following experiments – (1) Accuracy of different TB 



www.manaraa.com

21 
 

 

2
1
 

structural measure: thickness and marrow spacing, as well as the t-scale-based TB 

characterization measures, (2) Robustness and repeat scan reproducibility of TB 

structural, (3) Correlation between the TB structural measures computed at ex vivo (µ-

CT) and in vivo (MD-CT) resolutions using human ankle specimens, (4) Sensitivity of the 

TB structural measures to predict TB strength of cadaveric specimens, (5) Robustness of 

the TB structural measures on in vivo MRI images and (6) Application of the TB 

structural measures on in vivo MD-CT data. These experiments are further elaborated on 

here: 

Accuracy of TB thickness and marrow spacing, as well as the t-scale-based 

measures: computer-generated phantom images. For TB thickness and marrow spacing 

measures, three-dimensional (3-D) binary phantoms along with ground true regional 

thickness distribution at high resolution were generated. Then the test phantom images 

were generated by down-sampling binary phantoms at      ,      , and 

      and by adding noise at signal-to-noise ratios (SNR) of 6, 12 and 24. Error was 

calculated at individual voxel location in a phantom as the absolute difference between 

the true and computed thickness values. For t-scale-based measures, 3-D fuzzy phantoms 

with different widths at 50  m resolution were generated. Then the test phantom images 

were generated by down-sampling binary phantoms at 150  m resolution and by adding 

noise at signal-to-noise ratios (SNR) of 12. Mean plate width was calculated over the 

whole phantom region, and error was computed from the difference between the true 

width and computed values. 

Robustness of TB thickness and marrow spacing, as well as the t-scale-based 

measures: for thickness and marrow spacing measures, three different experiments were 

conducted to assess the robustness.  The first experiment was designed to examine 

robustness of the method under errors in skeletal location. The second experiment 

quantitatively examined the stability of the measures at different down-sampled μ-CT TB 

images. And the third experiment further examined the performance of the measures 
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under different resolutions, with the correlation computed from ex vivo µ-CT and in vivo 

MD-CT imaging. For the t-scale-based measures, only the second and the third 

experiments were done, because the algorithm is highly sensitive to the location of 

candidate points.  

Reproducibility of TB thickness and marrow spacing, as well as the t-scale-based 

measures: three repeat MD-CT scans of fifteen cadaveric ankle specimens were used to 

examine reproducibility. For quantitative analyses, ten spherical VOIs of the same radius 

were randomly selected in the first MD-CT scan of each specimen above the position 8 

mm proximal to the distal endplate, leading to a total of 150 VOIs. A post-registration 

algorithm was used to locate the matching VOIs in the second and third repeat scans. It is 

obvious that the results of reproducibility analysis depend on the scale of VOI, with 

larger VOIs showing improved reproducibility. The relationships between the TB 

structural measures’ reproducibility and VOI size were examined. 

Accuracy of TB thickness and marrow spacing, as well as the t-scale-based 

measures to predict TB strength: The purpose of this experiment was to compute 

ability of different TB structural measures in predicting TB biomechanical properties. 

This goal was achieved by measuring actual bio-mechanical parameters of TB cores and 

evaluating their correlation with the measures. Cylindrical TB specimens nominally 8 

mm in diameter and 20.9 3.3 mm in length were cored from each distal tibia specimen 

in situ along the proximal-distal direction for mechanical testing. The experiments will be 

performed on a servo-hydraulic material testing machine (MTS 858 Bionix, MTS 

Systems Corp., Eden Prairie, MN) at the Orthopaedic Biomechanics Laboratory, 

Department of Orthopaedics and Rehabilitation, University of Iowa, under the 

supervision of Dr. Heiner, Associate Research Engineer. 

T-scale-based measures on in vivo MD-CT patient data: All data come from the 

ongoing Iowa Bone Develop Study (IBDS) let by Dr. Steven M. Levy. Specifically, a 

total of 60 young adults (age: 18-21 years) were recruited in four different groups of 
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young adults with anticipated differences in bone mineralization to investigate several 

questions concerning associations of TB BMD and t-scale-based measures, and 

differences among study groups. Specifically, Group 1 was healthy young adult, Group 2 

was high-impact-sport athletes, Group 3 was cystic fibrosis patients and Group 4 was 

selective serotonin reuptake inhibitor (SSRI)-treated patients. For all measurements, the 

difference between healthy young male and female was quantitatively examined. For the 

TB thickness and marrow spacing measures, the differences between Group 2 and age-, 

sex- and BMI-matched healthy controls were examined, while for the t-scale-based 

measures, the different between Group 4 and age-, sex- and BMI-matched healthy 

controls were examined. 
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CHAPTER 2. QUANTITATIVE CHARACTERIZATION OF 

TRABECULAR BONE THICKNESS AND MARROW 

SPACING 

In this chapter, we describe the theory and algorithm of a new thickness 

computational method that is applicable to a fuzzy digital representation of any object at 

a relatively low resolution. The membership value at a given image voxel is interpreted 

as partial occupancy of the target object within the voxel. In other words, the membership 

value of a fuzzy object is treated as local object density. Although the thickness 

computation method is primarily designed for fuzzy digital objects at relatively low 

resolution, its premise is built on objects in the continuous space. In the following, we 

first establish the definition of “local thickness” in an object in the continuous space, and 

then we describe the algorithm that provides an effective solution for fuzzy digital objects 

at low resolution such as in vivo condition. 

Novel research works as presented in this chapter: 

1) Explore the definition of thickness at individual location within an object. 

2) Introduction of a new feature propagation algorithm which preserves the 

properties at skeleton points. 

3) Computation of TB thickness and marrow spacing at skeleton points based on 

the star-line algorithm. 

2.1 Definition of Thickness at Individual Location  

Let    denote the continuous three-dimensional (3-D) space and let      be an 

object in   . A ball    , is a maximally included ball (MIB) in  , if there exists no 

other ball      that contains  . Obviously, at a given point    , the local thickness 

should be related to the diameters of the maximally included balls containing the point   

[176]. However, the challenge arises from the fact that a point   is contained in multiple 

MIBs and the basic question is which one should be used to define the thickness at  . 
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Consider first the axial points of  . A point     is an axial point in   if there is a MIB 

of   that is centered at  . Following the fact that the maximally included ball   ( ) 

centered at a given axial point   is unique and it symmetrically defines the extent of a 

local object on both sides of the local axis,   ( ) is the natural choice for defining the 

thickness at  . Therefore, a proper choice of local thickness should satisfy the following 

property: 

Property 1   For any object      and any axial point    , the thickness of   at   is 

the length of the diameter of the unique MIB   ( ) centered at  .  

Additional importance of Property 1 is that it provides the necessary and 

sufficient condition for reconstruction of an object from its thickness distribution at axial 

points. Now, let us examine different possible options of defining local thickness at a 

non-axial point     using the MIBs containing  ; let   ( ) denote the set of all MIBs 

in   containing  . Hildebrand and Rüegsegger [176] used the largest ball in   ( ) to 

define the thickness at  , which was further studied by Moreno et al. [177]. Another 

variation of this choice is to select the diameter of the smallest ball in   ( ) to define 

the thickness at  . We will refer to these options as the largest and smallest MIB options. 

Both of these options fail to satisfy Property 1 as illustrated in Figure 2(a,b). Also, we 

examine the behavior of these options for an object formed by two overlapping disks of 

different scales and the results are illustrated in Figure 3(a,b). The largest MIB option 

shows thickness bias toward the larger disk, while the smallest MIB option picks the 

same artifact, but in the opposite direction. Thus, both the largest and the smallest MIB 

options suffer from serious drawbacks. Here, we introduce the idea of selecting the MIBs 

based on the distance from the center or from the circumference. 

Liu et al. [178] introduced the idea of selecting the MIB in   ( ) whose center 

is closest to the candidate point   and used its diameter to define the thickness at the 

given point  . Although the method satisfies Property 1 as illustrated in Figure 2(c), its 
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performance in the case of two intersecting balls is seriously flawed as shown in Figure 

3(c). Here, we propose the following definition of thickness which satisfies Property 1 

(see Figure 2(d)) and an unbiased thickness distribution is obtained for two overlapping 

balls with varying scales (see Figure 3(d)).  

Definition 1    For any object      and any point    , the thickness of the object   

at the point  , denoted as   ( ) is the length of the diameter of the MIB in 

  ( ), whose circumference is farthest from  .  

In the rest of this chaper, we will use the above definition of local thickness 

computation. It can be shown that, for any object      and any point    , the MIB 

in   ( )  whose circumference is farthest is unique. Therefore, the above definition 

produces a unique thickness distribution for any given object. Also, following Property 1, 

the thickness values   ( ) at axial points may reconstruct the original object  . In the 

following, we discuss other challenges of computing thickness in a digital fuzzy object at 

a relatively low resolution regime.   
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Figure 2  Comparison among different definitions of thickness in terms of satisfying 

Property 1. (a) Local thickness distribution on an ellipse using the largest MIB 

option except that the intensity at an axial point   is enforced as the diameter 

of the MIB centered at that point. (b-d) Same as (a) but for thickness 

computation using the options of smallest MIB (b), nearest MIB center (c), 

and farthest MIB circumference (d). Axial lines are partially visible in (a,b) 

indicating the failure of the corresponding thickness definitions in satisfying 

Property 1. The axial lines in (c,d) are not visible indicating that both the 

nearest MIB center and the farthest MIB circumference options satisfy 

Property 1. 
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Figure 3 Comparison among different definitions of thickness in terms of their 

performance for two overlapping disks of different scales. Disk boundaries are 

shown by dotted lines. (a) Local thickness distribution using the largest MIB 

option. Here, the larger ball gets higher preference and it enters inside the 

smaller ball. (b) Same as (a) but for the smallest MIB option; here, the artifact 

just opposite of that of (a). (c) Same as (a) but using the MIB with the nearest 

center. The failure of this option is obvious. (d) Same as (a) but using the MIB 

with the farthest circumference. A major advantage of this option is that it 

divides the intersecting regions between the two balls eliminating bias 

artifacts. 

2.2 Thickness Computation Algorithm  

A thickness computation algorithm in a low resolution fuzzy digital object 

following Definition 1 needs two major steps – (1) computation of local thickness at axial 

points and (2) inheritance of local thickness values at non-axial points from axial points.  

In conventional algorithms [116, 176], local thickness at axial points is 

determined by sampling the binary distance transform [179] at axial locations. Such 
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methods work fine when the image resolution is high and the objects are relatively large, 

but they may fail when the resolution is close to object thickness. This effect is reduced 

by using the fuzzy distance transform (FDT) [116] instead of the binary distance 

transform but FDT does not solve the other fundamental problem related to digitalization 

of the location of axial points. A thickness computation algorithm based on sampling 

binary or fuzzy distance transform [180] at axial locations is associated with random 

negative errors caused by digitalization of axial point locations and magnitudes of the 

random error are bound by the interval [  √   ⁄ ], where   is the voxel size. This error 

was thoroughly discussed by Saha and Wehrli [116] (see Figure 1 in [116]) and a 

resolution-dependent global compensation factor under several assumptions on structural 

anisotropy was proposed. The compensation is only applicable on the global measure of 

average thickness and it seems difficult to correct local thickness measures using Saha 

and Wehrli’s approach [116]. Further, the approach makes several assumptions on 

structural anisotropy which may not be applicable everywhere. Therefore, it is of 

paramount interest to develop a method that produces accurate thickness measures at 

axial points in a fuzzy object at relatively low resolution. 

Here, we introduce an intercept-based algorithm of computing thickness at axial 

points which is robust under small deviations of axial points that frequently happen 

during digitization of axial points. Let   {(    ( ))     } be a fuzzy object and let 

  {    ( )   } be the support of the fuzzy object. Let us consider a point    ; an 

intercept of   at   along a direction 〈                 〉 is the membership-weighted 

length of the straight line segment     (   )  passing through   with the two ends 

coinciding with the boundary of  . It should be noted that, for a given point    , there 

can be infinitely many intercepts of   passing through  . Let ∏ ( )  
 denote the set of all-

possible intercepts of   that pass through a point  . The thickness measure   ( ) at an 

axial point   on an elongated or surface-like region of an object is approximately equal to 

the length of the shortest intercept of   passing through  , i.e., 
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  ( )     
    ( )

 ( )  

Equation 1 

The above equation offers a new algorithm of computing thickness measure at an 

axial point as the minimum intercept length at that point. In the context of medical 

imaging, major advantages of this approach of defining local thickness are that – (1) the 

minimum-intercept length measure is highly robust under small random shifts of axial 

points, alleviating the resolution-dependent errors caused digitization of axial points 

[FDT] and by other error incurred during skeletonization and (2) partial voluming effects 

are efficiently handled during intercept length computation, yielding improved robustness 

across a wide range of image resolutions covering the range between in vivo and ex-vivo 

regimes. These claims are thoroughly examined and the experimental results are 

presented in Chapter 2.5. 

The algorithm for computation of the term        ( )  ( ) at an axial point   

may be designed using a star-line tracing approach (Figure 4). Specifically, the star-line-

based thickness computation algorithm is performed by locally tracing an object along   

pairs of mutually opposite sample lines emanating from a candidate point   (red dot in 

Figure 4). These sample lines are selected at a pseudo-uniform distribution over the entire 

3-D angular space [131]. For all experiments reported in this chapter, we used 123 pairs 

of sample lines at an approximate angular separation of 12
o
 between every two 

neighboring sample lines. The extent of the fuzzy object   along an individual sample 

line is determined by integrating object membership function    at sample points along 

the specific sample line until the sample line enters into background, i.e., the object 

membership at the last sample point reaches the value of zero. The local extent of the 

object along each sample line is recorded (purple dots in Figure 4). For each pair of 

opposite sample lines, the local intercept length for the target object along the specific 

direction is determined by adding the object intercept lengths along the two opposite 

directions. So far, the method provides   possible object intercept lengths along the   
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different directions of sample line pairs. Finally, thickness of the target object at the 

candidate axial point   (red dot in Figure 4) is computed as the shortest (orange line 

segment in Figure 4) among the   different object intercept lengths along different 

directions. Once the thickness values are computed at all axial points [181] using the 

above algorithm, thickness values at non-axial points are inherited from the axial points 

following Definition 1. Let the thickness at a given point   in a fuzzy object   be denoted 

as   ( ). The thickness computation algorithm can be summarized in the following three 

steps: 

Step 1. Computation of the surface skeleton   [112] of the support   of the fuzzy 

object as the set of axial points. 

Step 2. Computation of thickness   ( ) at all axial points     using the star-

line-based algorithm described above. 

Step 3. Inheritance of thickness   ( )  at all non-skeletal points       by 

inheriting the local TB thickness    ( )  from skeletal points following 

Definition 1. 

In the above algorithm, Step 1 is accomplished using the surface skeletonization 

algorithm by Saha et al. [112], while Step 2 is accomplished as described above. In the 

following, we describe the process for Step 3. 
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Figure 4   Illustration of star line-based TB thickness in two-dimensions. Candidate point 

(red), star lines (blue), edge locations (purple) and shortest intercept (orange) 

in TB thickness computation are shown. 

2.3 Improved Feature Propagation Algorithm 

Let     be an axial point and let     be a non-axial point. The distance of   

from the circumference of the MIB   ( ) centered at the axial point   is essentially the 

following measure   ( )    (   ), where the   (   ) is the fuzzy distance between 

  and   in   [45]. Therefore, following Definition 1,   inherits the thickness from an 

axial point   for which the measure   ( )    (   ) is maximized; in other words the 

term   (   )    ( )  is minimized and the task is accomplished by the following 

algorithm. 

begin algorithm-thickness-inheritance-from-axial-points  

input: 

    : a fuzzy object and its support  
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     : the set   of axial points of   and the thickness value   ( ) at each axial 

point     

output: 

 the thickness value   ( ) at every object point     

auxiliary data: 

    : each non-axial point    ,    ( ) is the negative of the fuzzy distance 

from the farthest MIB circumference 

    : for each object point    ,    ( ) indicates the center of the MIB 

whose circumference is farthest from   

  : a queue indicating the points yet to be processed 

initialization: 

for all axial points     

     ( )     ( ) 

     ( )    

  push   in the   

for all non-axial points     

     ( )           

     ( )    

propagation: 

while   is non-empty 

pop a point   from   

 for all point      ( ) 

  if    (  )     ( )  (  ( )    (  ))         

      (  )     ( )  (  ( )    (  ))         

      (  )     ( ) 

   push    in   
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thickness inheritance: 

for all non-axial points     

   ( )   (   ( )) 

end algorithm-thickness-inheritance-from-axial-points 

It should be noted that the above algorithm essentially records the term  (  ( )  

  (   )) in     which is minimized and the corresponding axial point   is recorded in 

    which eventually determines the inheritance of thickness value    at a non-axial 

point  . 

2.4 Experimental Plan  

As mentioned earlier in this chapter, the target application for the new thickness 

computation algorithm is computation of TB thickness and marrow spacing at in vivo 

MD-CT imaging of human distal tibia. To compute trabecular thickness, a fuzzy 

representation of bone structure is used where the membership value at a given voxel   

represents the bone volume fraction (BVF) at that voxel denoted as    ( ). Marrow 

space represents the marrow-filled region among trabeculae. Therefore, marrow spacing 

among individual trabeculae is computed from marrow volume fraction image (MVF) 

derived as the inverse of the BVF image as follows: 

   ( )         ( )  
Equation 2 

Computation of both trabecular thickness and marrow spacing are performed 

using the algorithm described in Chapter 2.2. Specifically, the two TB measures, namely, 

TB thickness (   ) and marrow spacing (   ), are computed over a target volume-of-

interest (VOI)   as follows: 

    ∑    ( )
   

   ⁄  

Equation 3 
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    ∑    ( )
   

   ⁄  

Equation 4 

where     is the total number of voxels in a region. In addition to the two TB 

micro-architectural measures, average BMD over the   was computed as described in 

[181]. 

The overall experimental study was designed – (1) to evaluate the method’s 

accuracy and stability under random local shifts in axial points and across a wide range of 

image resolutions, (2) to assess the method’s inter-modality correlation and repeat scan 

reproducibility, (3) to examine the ability of the method to predict TB strength, and (4) to 

assess the method’s application in in vivo studies. The accuracy of the method was 

evaluated using computer-generated phantoms at different levels of noise and down-

sampling. The stability of the method was assessed using µ-CT images down-sampled at 

different image resolutions from 28.5 µm to 199.5 µm covering the range between in vivo 

and ex-vivo regimes. Also, the correlations of TB thickness and marrow spacing measures 

derived from ex vivo µ-CT imaging and in vivo MD-CT imaging modalities, as well as 

their repeat-scan MD-CT reproducibility, were examined using cadaveric ankle 

specimens. Linear correlation of bone measures with experimentally determined bone 

strength was examined on the same cadaveric specimens. All cadaveric experiments were 

performed at the distal tibia site and the following sequence of steps was applied to each 

specimen – (1) MD-CT imaging, (2) removal of soft tissue and dislodgement of distal 

tibia from the ankle joint, (3) µ-CT imaging, (4) specimen preparation and TB core 

extraction, and (5) mechanical testing to compute compressive Young’s modulus and 

Yield stress. Application of the method in a pilot study included in vivo MD-CT imaging 

of forty healthy young adult volunteers and ten young-adult athletes. In the following, we 

describe the materials and methods used to conduct each of these experiments. 
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2.4.1 Cadaveric specimens and MD-CT and µ-CT imaging 

Fifteen fresh-frozen human cadaveric ankle specimens were obtained from 11 

body donors (age: 55Y to 91Y). The bodies were collected under the Deeded Bodies 

Program, The University of Iowa, Iowa City, Iowa, USA, and the ankle specimens were 

removed at the mid-tibia region. Exclusion criteria for this study were evidence of 

previous fracture or knowledge of bone tumor or bone metastasis. These ankle specimens 

were kept frozen until the performance of MD-CT imaging. 

High resolution MD-CT scans of the distal tibia were acquired at the University 

of Iowa Comprehensive Lung Imaging Center on a 128-slice SOMATOM Definition 

Flash scanner (Siemens, Munich, Germany) using the following CT parameters: Single 

tube Spiral acquisition at 120 kV, 200 effective mAs, 1 sec rotation speed, pitch factor 

1.0, nominal collimation 16 0.3 mm, scan length of 10 cm beginning at the distal tibia 

end-plateau, and total effective dose equivalent to 17 mrem (  20 days of environmental 

radiation) in the USA. Following all MD-CT repeat scans, each specimen was further 

scanned on an Imtek Micro-cat II scanner at 28.5 µm isotropic resolution, after removing 

soft tissue and dislocating the tibia from the ankle joint. 

2.4.2 Mechanical testing and determination of bone strength 

Cylindrical TB specimens nominally 8 mm in diameter and 20.9 3.3 mm in 

length were cored from each distal tibia specimen in situ along the proximal-distal 

direction for mechanical testing. A-P and M-L radiographs were first used to determine 

the plane of an initial distal cut done to eliminate the growth plate from a test specimen, 

and then to determine the central axis of the bone and thus the core location; the initial 

distal cut was located 2 mm proximal to the growth plate. Each specimen was cored with 

saline immersion using an 8.25 mm inner diameter diamond coring bit (Starlite Industries, 

Rosemont, PA). The core was released from the distal radius by cutting it with a razor 

saw, and the specimen ends were sanded smooth, flat, and parallel. Specimen length and 
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diameter were measured three times and averaged, and the middle 6 mm of the specimen 

length was marked for extensometer attachment position. For extensometer testing, a 

minimum specimen length of 18 mm was desired, to achieve both the minimum aspect 

ratio of 2:1 recommended for TB compression specimens [182] and a 3:1 ratio of 

specimen length to extensometer gage length used in an earlier study [182]; all specimens 

satisfied the required aspect ratio. For the subsequent non-extensometer testing, specimen 

length was dependent on how much bone needed to be removed from the damaged ends. 

The resulting aspect ratios were all greater than 1:1 for all specimens, except for two with 

the two-lowest Young’s modulus values, which were excluded for the test. Thus, thirteen 

specimens were used for the non-extensometer test. For both extensometer and non-

extensometer tests, specimen length, diameter and its location from the distal tibial 

endplate were recorded and used to determine the VOI to compute MD-CT-based 

measures. Each core was wrapped in saline-soaked gauze and frozen until thawed for 

testing. 

Compressive Young’s modulus of each TB core was mechanically tested on an 

electromechanical materials testing machine as shown in Figure 5 (MTS Insight, MTS 

Systems Corp., Eden Prairie, MN). Each specimen was placed between unlubricated, 

polished, plano-parallel steel platens. For the extensometer test, to minimize specimen 

end effects, strain was measured with a 6 mm gage length extensometer (model 632.29F-

30, MTS Systems Corp., Eden Prairie, MN) attached directly to the midsection of the 

bone. For the non-extensometer test, strain was measured with the testing machine at the 

compressing platens. A compressive preload of 10 N was applied and strains then set to 

zero. At a strain rate of 0.005 sec
–1

, each specimen was preconditioned to a low strain 

with at least ten cycles and then loaded to failure. Young’s modulus (E) was determined 

for each specimen as the highest 20% section slope of the stress-strain curve. Yield stress 

was determined as the intersection of the stress-strain curve and a 0.2% strain offset of 

the modulus. 
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Figure 5  Compressive mechanical testing of TB specimens. (a) Extensometertesting. 

(b) Nonextensometer testing; note black lines indicating original extensometer 

position, with damaged bone removed from the bottom (proximal part) of the 

specimen. 

2.4.3 Human volunteers for the in vivo study 

In vivo MD-CT distal tibia bone scans of twenty healthy male (M) and twenty healthy 

female (F) volunteers 19 to 21 years of age were collected from the ongoing Iowa Bone 

Development Study (IBDS). MD-CT scans were performed on the left lower leg of each 

volunteer following the protocol at 120 kV and 200 effective mA. Each volunteer’s tibial 

length was determined by locating the distal and proximal tibial plateaus in the AP 

projection MD-CT scout scan of the entire tibia. Along with the healthy volunteers, six 

male (M) and four female (F) athletes 19 to 21 years of age were recruited and the same 

MD-CT bone scan was performed.  
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2.4.4 Image processing 

Both cadaveric and in vivo MD-CT bone images were processed through the 

following cascade of steps: (1) computation of BMD image; (2) conversion of BMD to 

BVF and MFV images; (3) re-sampling of the BVF and MVF image using the 

windowed-sinc interpolation method to produce 0.15 mm isotropic voxels; and (4) 

computation of trabecular bone thickness (   ) and marrow spacing (   ) by applying 

the thickness computation algorithm of Chapter 2.2 to BVF and MVF images, 

respectively. For µ-CT images, BVF images were directly computed from the raw CT 

data using the bimodal intensity distribution. MD-CT imaging acquires data in 

Hounsfield units (HU) and these numbers were converted to BMD (mg/cc) measures 

using a calibration phantom. For the experiments presented in this chaper, two different 

calibration phantoms were used. Specifically, the INTable
TM

 calibration phantom was 

used for all cadaveric specimen scans, while the Gammax
TM

 calibration phantom was 

used for all human in vivo scans. Finally, a BMD image was converted to BVF image 

using the following equation [183]: 

   ( )  {

        ( )           

   ( )     

        
      ( )                          

          

 

Equation 5 

2.4.5 VOI selection for the cadaveric study on bone strength prediction 

The objective of VOI selection for the cadaveric study was to select a region that 

is close to the region that was drilled during specimen preparation for mechanical testing. 

The size and location of these VOIs were chosen as per the information recorded during 

specimen preparation for each experiment. First, the bone was oriented to align its axis 

along the coordinate z-axis using the following two steps – (1) generation of a cylinder   

with its axis lying on the coordinate z-axis and its cross-sectional area equating to the 

average tibial cross sectional area, and (2) reorientation of the tibial volume to align its 
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axis with   by maximizing the overlap between the tibial volume and the cylinder  . 

After reorienting the bone image, a VOI cylinder of 8 mm diameter along the coordinate 

z-axis was generated and its proximal end was manually positioned at the center of the 

cortical rim using in-plane translation through a graphical user interface. The location of 

the distal end of the VOI cylinder in the slice direction and its length were determined as 

per the core location and length recorded during specimen preparation; the growth plate 

was visually located in the CT data of each specimen. Finally, the central 6 mm region 

from the cylinder was used as the VOI for the extensometer test; for the non-

extensometer study, the length of the VOI was determined as per data collected during 

specimen preparation for the second mechanical test.  

2.4.6 Individual-specific VOI selection for the in vivo pilot study 

The purpose of VOI computation in the in vivo pilot study was to adjust the VOI 

for the individual-specific tibia length and width. The following protocol was adopted for 

the current study – (1) determination of tibial length by locating distal and proximal end 

plateaus on the MD-CT scout scan; all proximal sites are defined as percentage of tibial 

length in reference to the distal end plateau, (2) reorientation of the tibial image to align 

its axis with the coordinate z-axis using the same protocol described in the previous 

section, (3) location of the distal end plateau in the MD-CT volume scan, and (4) 

determination of the ROI at the 5% proximal site of the distal tibia covering 2% of the 

tibial length after applying a 45% peel on each cross-sectional slice. 

2.5 Results  

Results of TB thickness measures for three specimens with different experimental 

mechanical bone strengths are illustrated in Figure 6. As observed in the figure, an 8% 

difference in BMD from a strong bone (a) to a weak bone (c) leads to a 70% loss in bone 

strength and manifests as a 20% reduction in TB thickness and a 42% increase in marrow 

spacing. This observation supports that TB thickness and marrow spacing measures are 
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highly sensitive to bone loss and therefore, play a significant role in early detection of 

bone diseases. 

 

Figure 6  Illustration of the TB thickness and marrow spacing measures for three different 

TB specimens – (a) strong (yield stress: 11.5 MPa), (b) moderate (7.1 MPa) 

and (c) weak (3.4 MPa). 

2.5.1 Accuracy results 

To quantitatively examine the accuracy of the method, three-dimensional (3-D) 

binary phantoms along with ground true regional thickness distribution at high resolution 

were generated. Then the test phantom images were generated by down-sampling binary 

phantoms at      ,      , and       and by adding noise at signal-to-noise 

ratios (SNR) of 6, 12 and 24. Error was calculated at the individual voxel location in a 

phantom as the absolute difference between the true and computed thickness values. The 
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high resolution binary image and the true thickness distribution were generated as follows. 

The process starts with quasi-uniform sampling of an ideal mathematical skeleton in the 

continuous 3-D space   ; let    be the set of    number of sampled points. A Euclidean 

distance transform (DT) was computed from    and let           denote that DT 

map. To generate a binary object with non-uniform thickness value, a smooth varying 

true thickness field, say             
    , was generated. Finally, a volumetric object 

corresponding to the true skeleton    was defined as the set of all voxels with its 

Euclidean distance     not exceeding the local thickness value           . The thickness 

field            was used as the true thickness distribution. For the current experiment, six 

binary objects with true thickness distribution were generated and an example binary 

object is shown in Figure 7. Let      be the binary object and let                  

   be the thickness distribution of the phantom generated from   at the downsampling 

rate of   and the noise at SNR of  . Thickness computation error is computed using the 

following equation: 

         
 

   
∑|          ( )               ( )|

   

  

Equation 6 
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Figure 7  Computer-generated phantoms data at different levels of noise and down 

sampling. (a) Three-dimensional rendition of the true binary phantom. (b-d) 

Axial image slices of test phantoms at SNR values of 24, 12 and 6 and down-

sampling rates of three, four, and five voxels.  

Table 1    Computation error of thickness for different parameters 

Different 

down-sampling 

 

 

 

Different 

methods 

 Different signal to noise ratio 

 noise free SNR 24 SNR 12 SNR 6 

      
 

New method  1.04 0.15 1.17 0.22 1.37 0.29 1.53 0.20 

FDT-based  1.29 0.25 1.53 0.37 1.74 0.35 2.18 0.33 

      
 

New method  1.19 0.17 1.31 0.16 1.62 0.24 1.76 0.20 

FDT-based  1.51 0.37 1.78 0.47 1.98 0.47 2.38 0.45 

      
 

New method  1.22 0.20 1.59 0.14 1.82 0.20 2.01 0.20 

FDT-based  2.34 0.10 2.56 0.09 2.71 0.09 2.98 0.15 

Note: Thickness computation errors on phantoms at different levels of down-sampling 

and noise. At each level of down-sampling and noise, the mean and standard deviation of 

voxel-by-voxel thickness computation errors over the entire object are presented. 
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The average errors using both the new method and previously reported FDT-based 

method [14] for six phantoms at each level of noise and down-sampling are presented in 

Table 1. Clearly, compared to the FDT-based method, the new method produces smaller 

errors at all different combinations of noise levels and down-sampling rates, and t-tests 

show the differences are significant, with a p-values < 0.001. 

Also, we conducted factor analysis of thickness errors comparing the new and the 

FDT-based methods. Four factors, namely, Phantom, Method, SNR, and Down-Sampling 

(DS) were identified for this experiment. One model with the three-way interaction effect, 

three two-way interaction effects and the three main effects was developed. There was no 

evidence for a Method SNR DS three-way interaction effect. The next model deleted 

the three-way interaction effect and included the three two-way interaction effects and the 

three main effects. There was no evidence for Method SNR or DS SNR interaction 

effects; however, the Method DS interaction effect was significant (p<0.0001). That 

indicates that the pattern of mean errors for the new and FDT-based methods are different 

across the three rates of DS (as can be seen in Figure 8 that a more dramatic increase in 

the FDT-based method mean errors across the three DS rates). The final model included 

the Method DS interaction effect as well as the three main effects. The Method DS 

interaction effect was significant (p < 0.0001) as was the SNR main effect (p < 0.0001). 

Because of the interaction effect, pairwise comparisons between methods were conducted 

at each level of DS and the results show that the two methods are significantly different 

(p < 0.0005). The Bonferroni procedure was used to correct for the three pairwise 

comparisons. 
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Figure 8   Illustration of the error rate against down-sampling rate between the proposed 

method and the FDT-based methods. 

 

2.5.2 Robustness under various conditions 

Three different experiments were under-taken to assess the robustness of the new 

method. The first experiment was designed to examine robustness of the method under 

errors in skeletal location. The motivation for this experiment was to examine whether 

the new thickness computation algorithm is prone to the digitization error of skeletal 

location, the issue discussed by Saha et al. [116]. For this purpose, each computed 

skeletal voxel [112] was randomly replaced by one of its       neighbors and then 

Steps 2 and 3 of the thickness computation algorithm were followed. In this experiment, 

each image point is considered as a test instance generated from MD-CT images of 

fifteen ankle specimens. The mean and standard deviation of voxel-by-voxel errors in TB 

thickness computation were 8% and 6%, respectively. It should be mentioned that 8% 
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and 6% thickness computation errors at 150 µm resolution are equivalent to ~0.12 and 

0.09 voxel errors. Further, it should be mentioned that the error was reduced to 3% or 

0.04 voxel when an average thickness over VOI of 1 mm
3
 was taken. 

To quantitatively examine the stability of the thickness computation method, we 

applied the method on ten µ-CT images each down-sampled at six different resolutions. 

Specifically, ten µ-CT images of original isotropic voxel size of 28.5 µm were used for 

this experiment and each of these images was down sampled at six lower isotropic 

resolutions of 57.0 µm, 85.5 µm, 114.0 µm, 142.5 µm, 171.0 µm and 199.5 µm as shown 

in Figure 9. Computed mean thickness values for different specimens at various 

resolutions are illustrated in Figure 10(a). Thickness computation error for a specific µ-

CT image at a given down-sampled resolution was computed as the difference of mean 

thickness values computed at the given and the original µ-CT resolutions. Finally, the 

average and standard deviation of thickness computation error at a given resolution was 

computed over the ten µ-CT images and the results are shown in Figure 10(b). As 

observed in Figure 10(a), despite a wide range of down-sampling resolutions covering ex 

vivo to in vivo resolution regimes, the average thickness error is only 4.3%. These results 

demonstrate that the new thickness computation method is highly stable across a wide 

range of resolutions. 
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Figure 9  Illustration of the µ-CT down sampled at different levels of resolution: (a) 
28.5 µm, (b) 114.0 µm, and (c) 199.5 µm. 

 

Figure 10  Illustration of the stability of the new algorithm across different image 

resolutions. (a) The mean thickness    over a cylindrical VOI change as the 

resolution changes. (b) The Error of the mean thickness value    as the 

resolution changes compared to the average thickness from all ten images. 

To further examine the performance of the algorithm under different resolutions, 

the correlation of TB thickness computed from ex vivo µ-CT and in vivo MD-CT imaging 

was examined. The purpose of this experiment is different from the previous experiment. 

In the previous experiment, different resolutions were obtained computationally, while 

the current experiment examines the performance of the method for different image 

acquisitions using two widely different modalities in the presence of modality-dependent 
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artifacts. Matching axial image slices from post-registered µ-CT and MD-CT images of a 

cadaveric specimen are presented in Figure 11. As observed in the figure, the trabecular 

structures are generally thicker in MD-CT imaging due to a larger modulation transfer 

function (MTF) of the MD-CT image. The linear correlations of TB thickness and 

marrow spacing computed from post-registered µ-CT and MD-CT images are presented 

in Figure 12. The    values from a linear regression model of TB thickness and marrow 

spacing measures in two different modalities are 0.93 and 0.91, respectively, with slopes 

of 1.66 and 1.08, respectively. For both measures, the regression line passes near the 

origin.  

 

Figure 11  Illustration of matched axial image slices from post-registered µ-CT and MD-

CT images of a cadaveric specimen: (a) µ-CT and (b) MD-CT. 



www.manaraa.com

49 
 

 

4
9
 

 

Figure 12 Illustration of the linear correlation of TB thickness and marrow spacing 
computed from post-registered µ-CT and MD-CT images: (a) TB thickness 
and (b) marrow spacing. 

2.5.3 Reproducibility analysis 

Three repeat MD-CT scans of fifteen cadaveric ankle specimens were used to 

examine the method’s reproducibility. Figure 13 illustrates a color-coded TB thickness 

map over a matching volume in two repeat MD-CT-scans of the distal tibia. For 

quantitative analyses, ten spherical VOIs of the same radius were randomly selected in 

the first MD-CT scan of each specimen above the position 8 mm proximal to the distal 

endplate, leading to a total of 150 VOIs. A post-registration algorithm was used to locate 

the matching VOIs in the second and third repeat scans. It is obvious that the result of 

reproducibility analysis depends on the scale of VOI, with larger VOIs showing 

improved reproducibility. The relationship between the method’s reproducibility and VOI 

size is presented in Figure 14. It is observed in the figure that, for the new method, at a 

VOI diameter of 3.45 mm or greater, the intra-class correlation coefficient (ICC) exceeds 

the value of 0.95, suggesting that the measure is highly reproducible for assessing 

regional bone alteration. For the conventional FDT-based approach, the VOI diameter 

has to reach 6.15 mm to achieve equivalent performance in terms of the ICC. 
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Figure 13 Illustration of reproducibility of the TB thickness measure under repeat MD-

CT scans. (a-b) color coded trabecular bone thickness images. (c-d) trabecular 

bone image without color coding. (e) color coding bar. Specimens were 

repositioned on the CT table before each repeat scan. 
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Figure 14  Illustration of repeat MD-CT scan ICC values at different VOI diameters 

using both the new algorithm and FDT-based algorithm. As displayed, at a 

VOI diameter of 3.45 mm or greater, the ICC value using the new algorithm 

exceeded the mark of 0.95, while the TB thickness measure using the FDT-

based algorithm requires a VOI diameter of 6.15 mm or greater. 

2.5.4 Predicting bone strength 

To examine the ability of TB thickness and marrow spacing computed by the new 

method to predict bone strength, a linear correlation analysis between each of the two 

measures and the TB’s experimental Young’s modulus and Yield stress was performed. 

The image-based measures were computed over a cylindrical VOI with its axis aligned to 

that of the distal tibia and its length and position selected, as per the data recorded during 

specimen preparation and mechanical, testing as described in Chapter 2.4.5. The results 

of correlation analysis between Yield stress and each of the TB thickness and marrow 

spacing measures using the new method are shown in Figure 15(a,b) while the results 

using the FDT-based algorithm are shown in Figure 15(c,d). The values of    of the 

linear correlation between TB Young’s modulus and the different TB measures are 

presented in Table 2. For both Yield stress and Young’s modulus parameters, the TB 

thickness and marrow spacing measures computed using the new method have 
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demonstrated superiority in predicting bone strength as compared to the FDT-based 

measures and MD-CT based volumetric BMD. 

 

Figure 15  Ability of different TB measures using the new algorithm to predict bone 

strength shown in terms of    values of linear correlation between yield stress 

and each of     (a) and     (b). (c,d) Same as (a,b) but for the FDT-based 

method [116]. 

Table 2  Results of linear correlation (   values) between TB thickness and marrow 
spacing measures and experimental TB strength parameters. 

TB strength 

parameters 

New method FDT-based method  

BMD                 

Young’s Modulus 0.83 0.85 0.61 0.74 0.78 

Yield stress 0.87 0.86 0.70 0.72 0.79 
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2.5.5 Results of in vivo pilot study 

To evaluate the effectiveness of the method, in vivo MD-CT data of twenty male and 

twenty female volunteers (19Y to 21Y) were used to form body mass index (BMI) order-

matched male-female pairs. The BMI was 26.89 6.32 kg/m
2 

(mean   SD.) for males and 

25.15 7.96 kg/m
2
 for females, and    for the two ordered groups of BMIs was 0.96. TB 

thickness and marrow spacing measures were computed for the 40 volunteers over the 

ROI discussed in Chapter 2.4.5. The colored results for one male-female pair are shown 

in Figure 16. Clearly, the results indicate that the male has thicker TB than the female. 

Quantitative results show that males on average have 6.7% thicker TB and 13.9% 

reduced marrow spacing as compared to females. Paired t-test results showed the 

differences were statistically significant with p-values  0.03 for both TB thickness and 

marrow spacing. Using the FDT-based methods, males on average have 2.6% thicker TB 

and 12.3% reduced marrow spacing as compared to females, with p-values of 0.29 and 

0.12 for TB thickness and marrow spacing, respectively. 

In vivo MD-CT data from ten athlete volunteers (six male and four female) were 

processed. Collegiate athletes who were actively participating at the varsity-level in 

volleyball or basketball were recruited from regional colleges and universities. All 

athletes were screened to ensure that they had not been injured in the previous year. A 

control group was formed by selecting among the 40 healthy volunteers, ten with the 

same gender and the most similar BMI index. The mean BMIs were 23.73 ± 1.56 kg/m
2
 

for athletes, and 24.07 ± 1.83 kg/m
2 

for the control group, and    for the two groups of 

height is 0.96. The colored results for one athlete and one non-athlete with similar BMI 

values are shown in Figure 17. Obviously, the results indicate that the athlete has thicker 

TB than the non-athlete. Quantitative results show that athletes on average have 9.4% 

thicker TB and 11.0% reduced marrow spacing as compared to sex and BMI-matched 

healthy controls. Results of paired t-tests showed the differences were statistically 

significant with p-values of 0.01 and 0.04 for TB thickness and marrow spacing, 
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respectively. Using FDT-based methods males on average have 10.0% thicker TB and 

9.3% reduced marrow spacing as compared to females, with p-values of 0.07 and 0.14 for 

TB thickness and marrow spacing, respectively. 

 

Figure 16  Illustration of the new thickness computation algorithm for in vivo imaging on 

an age-BMI-similar female and male pair: (a) female healthy volunteer and (b) 

male healthy volunteer. 
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Figure 17   Same as Figure 16, but comparison between an age-sex-BMI-similar athlete 

and a non-athlete: (a) non-athlete and (b) athlete. 
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2.6 Conclusion 

In this chapter, we presented a new thickness computation algorithm for fuzzy 

digital objects at relatively low resolution and have investigated its role in computing TB 

thickness and marrow spacing measures through MD-CT imaging under in vivo 

conditions. Results of a comprehensive study on computer-generated phantoms and 

fifteen cadaveric ankle specimens evaluating the new method were presented. Observed 

results demonstrated encouraging accuracy and stability of computed thickness at 

different levels of noise and down-sampling. Also, high repeat MD-CT scan 

reproducibility of the new thickness computation method was observed in the cadaveric 

ankle study. TB thickness and marrow spacing measures demonstrated higher ability to 

predict trabecular bone’s experimental mechanical properties under in vivo conditions as 

compared to bone mineral density and conventional FDT-based methods. Currently, we 

are investigating the power of the new method to characterize clinical groups in terms of 

their bone health. Also, in vivo data from forty age-similar and BMI order-matched male 

and female volunteers demonstrated that males have significantly thicker trabeculae and 

significantly reduced marrow spacing as compared to females. Although similar 

differences in TB thickness and marrow spacing between males and females were 

observed for FDT-based measures, they were not statistically significant. A second 

experiment on ten basketball or volleyball athletes and age-sex-BMI-similar sex healthy 

matched the controls showed that, using the current method, athletes have significantly 

thicker TB and significantly reduced marrow spacing. A similar analysis using FDT-

based measures marginally failed to demonstrate statistically significant differences in 

TB thickness and marrow spacing between and athletes and healthy matched controls. 
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CHAPTER 3. TENSOR-SCALE-BASED QUANTITATIVE ANALYSES 

OF TRABECULAR BONE MICRO-ARCHITACTURE 

This chapter describes the theory and algorithm for t-scale computation that is 

applicable to fuzzy digital object representation (here, TB structure) at relatively low 

resolutions. For the current application, the membership value at a given image voxel is 

interpreted as a partial occupancy of bone within the voxel, termed the bone volume 

fraction (BVF). To characterize structural geometry the proposed algorithm finds the 

largest ellipsoid fitting within the local TB structure. In the rest of this chapter, we will 

use   , where   is the set of integers, to denote the underlying image voxel grid or image 

grid and              to denote the function providing bone volume fraction at 

image voxel . Also, let    denote the continuous three-dimension (3-D) space. An 

element of the image grid    will be referred to as an image voxel, or simply, a voxel. An 

element of    will referred as a point. Several novel improvements are made for this 3D 

t-scale algorithm, listed as follows: 

Novel research works as presented in this chapter: 

1) Improvement in t-scale computation algorithm. 

2) Introduction of t-scale-based “axial-point” with sub-voxel precision. 

3) Computation of local structure measures at axial points and propagate those 

measures to non-axial points in the volumetric data using a feature propagation 

algorithm. 

4) Computation of different t-scale-based TB measures. 

3.1 Tensor Scale Computation 

Tensor scale (t-scale) [131] at a point   inside an object   is the parametric 

representation of the maximally included ellipsoid centered at  , where the maximality of 

the three semi-principal axes is accomplished in the reverse order of their lengths. In 

other words, first, a ball is isotropically grown from its center   until it hits the boundary 
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of   and it defined the first semi-axis of t-scale; then the circle on the orthogonal sub-

space is allowed to grow until it hits the boundary of   in the sub-space; and so on. Saha 

[131] provided a computational solution for tensor scale based on sample line tracing 

while Xu et al. [184] presented a computationally efficient algorithm using differential 

geometric approaches. Here, we leverage the original sample line-based approach since it 

alleviates digitization effects at low resolutions by ellipsoid fitting. The process of t-scale 

computation at point   is schematically illustrated in Figure 18. For simplicity, 2-D 

illustrations are used while the method is described in 3-D. The method is based on 

tracing pairs of radially opposite sample lines that emanate from a point   and locate the 

closest feature edge on every sample line (pink points in Figure 18(a)). The edge points 

are repositioned to ensure axial symmetry (yellow points in Figure 18(a)). Finally, the t-

scale at   is determined by computing the best-fit ellipsoid to the repositioned edge 

points (Figure 18(b,c)). The following steps described this process in detail. 

 

Figure 18 2D Illustration of steps in t-scale computation. (a) Radially opposite sample 

line pairs (blue) with the candidate point as origin (red), edge points (pink) on 

radial sample lines (blue) and repositioned edge points (yellow) from the 

center point (red). (b) The edge point and repositioned edge points (gray) are 

translated the original and rotated to align with the coordinate axis (white) 

after applying PAC on the points, bounding box (dotted) and the best-fit 

ellipse (grey) (c) Final t-scale ellipsoid (green).   

 

 



www.manaraa.com

59 
 

 

5
9
 

Step 1: Edge detection along sample lines 

First,   pairs of mutually opposite sample lines over the entire 3-D angular space 

are selected at a pseudo uniform distribution to ensure the final t-scale is not skewed in 

any direction. Here, we have used an approximate 22.5
o
 of angular separation between 

neighboring sample lines leading to m    pairs of sample lines. The choice of m was 

made by analyzing the trade-off between computation time and accuracy performance; 

the current computation time for a human bone data over an ROI of             

voxels is approximately 40 minutes. Two other parameters, namely, the sampling 

interval,  , and the sample line length,  , are necessary.   defines the set maximum 

possible length of individual trabeculae in one direction; here, we have used       . 

  defines the step-size between two successive test edge points on a sample line and is set 

based on the scale of the finest detectable structure. Assuming that the image resolution is 

appropriate for the target application, we recommend choosing   between ‘1’ and ‘0.5’ 

times the smallest dimension of a pixel. Following the Nyquist theorem of sampling, 

      is sufficient for reconstruction of a signal and therefore, setting       offers no 

additional benefit. On the other hand, if     is used, we clearly miss one voxel thick 

structures in an image. In this chapter      .  

The  th
 sample line   

  emanating from any point   in the continuous 3-D space    

may be defined as a vector sequence of sample points   
       

         
     , where, 

  
       and       . The BVF value at each sample point   

     is computed by tri-

linear interpolation of BVF values at the eight image voxels on the       bounding 

box of   
    . Finally, the edge on the sample line   

  is located at a distance   
  from  ,  

  
  ∑  

(   [  
    ]     [  

      ])

 

  
   

   

  

Equation 7 
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where,   
  is the first sample point on   

  with interpolated BVF as zero indicating 

a full-background location. In the above equation, the term (   [  
    ]     [  

    

  ])    represents the average density over the interval between the two successive 

sample points   
     and   

      . The multiplication of the average density with step-

size   accounts for partial voluming.  

Step 2: Repositioning edge points 

The edge points obtained in Step 1 describe the boundary of the local object 

centered at the image point  . Following the axial symmetry of an ellipsoid, as 

demonstrated by Saha [131], for each pair of opposite sample lines the two edge points 

should be equidistant from  , which is the center of the t-scale ellipsoid. However, the 

detected edge points on a local structure do not necessarily satisfy this property. For 

example, in Figure 18(a), the edge locations colored pink on the lower-right sample lines 

are mostly farther from the candidate point   than corresponding opposite sample lines. 

Therefore, the edge points need to be repositioned by analyzing the edge points on every 

pair of sample lines. Specifically, between the two edge points on a pair of sample lines, 

the one closer to   is selected and reflected on its complementary sample line. The edge 

locations colored yellow are obtained using this repositioning algorithm. In the rest of 

this chapter, “edge point” will refer to “repositioned edge point”. 

Step 3: T-scale ellipsoid fitting 

The last step in t-scale computation is to fit an ellipsoid to the repositioned edge points. 

In our application, the number of edge points is significantly larger than the number of 

parameters needed to represent an ellipsoid. The literature on ellipsoid fitting is quite 

mature with several established approaches [185-187]. All ellipsoid fitting approaches 

essentially minimize the error between the observed data (here, the edge points) and the 

computed ellipsoid. Primarily, these methods differ with respect to the nature of these 

errors. When errors are defined using algebraic distance, a canonical solution can be 
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derived leading to a computational efficient solution. However, the solution may not be 

stable for highly anisotropic data sets, and in our application such situations may occur 

frequently. The geometric distance approach generates stable solutions for most 

ellipsoids and uses a more natural Euclidean distance metric. Unfortunately, it is difficult 

to derive a canonical form solution for ellipsoid fitting that optimizes geometric distance 

error, and therefore, a geometric distance based approach commonly utilizes 

optimization. Here, the geometric distance error is used and the fitting algorithm is 

summarized as follows (Figure 18(b)): 

Step 3.1 Translate all edge points, moving the candidate point   to the origin.  

Step 3.2 Apply principle component analysis (PCA) to edge points computing 

eigenvectors (  ( )   ( )   ( ))  of the point-distribution. 

Step 3.3 Rotate the edge points to align   ( ) ,   ( ) , and   ( )  with the three 

coordinate axes.  

Step 3.4 Determine the smallest box enclosing all edge points and use it to 

determine the eigenvalues for the initial guess of the best-fit ellipsoid. 

Step 3.5 Compute the final ellipsoid by applying iterative minimization of the sum 

of geometric distance errors using the Newton’s optimization algorithm. 

Let (  ( )   ( )   ( )) be the length of the three semi-principal axes of 

the ellipsoid. 

Step 3.6 Set the t-scale at the point   as the ellipsoid with the three semi axes – 

(  ( )  ( )   ( )  ( )   ( )  ( )). 
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Figure 19  Illustration of the t-scale ellipsoid fits for different points on the TB structure. 

To obtain accurate descriptions of local dimensions, these measures must be 

derived from the mid-point of the respective dimension. (a) A generic 

trabeculae with sample points defined on the surface skeleton,  , the arc 

skeleton,  , and defined at the central point on the structure,  . (b) T-scale 

accurately captures the thickness information only when considering an 

arbitrary point on the surface skeleton; (c) captures the thickness and width 

information when considering a point on the arc skeleton; and (d) captures all 

three dimensions when considering the central point. 

3.2 Characterization of Individual Trabeculae 

As described in the previous chapter, t-scale at a point   is represented by three 

eigenvectors (  ( )   ( )   ( ))  and corresponding eigenvalues (  ( )   ( )   ( )), 

which may be used to quantify geometric properties of the local structure. At this point, it 

is important to understand how the representative points are defined while characterizing 

a specific geometric property of a local structure. An elongated plate-like structure may 

be broken down into its surface skeleton and arc skeleton as shown in Figure 19(a), see 
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reference [41]. Three different geodesic measures may be defined on the structure – (1) 

thickness, i.e., the smallest dimension, (2) width, the second largest dimension, and (3) 

length, the largest dimension. To obtain accurate descriptions of local dimensions, these 

measures must be derived from the mid-point of the respective dimension. Thus on the 

surface skeleton (e.g., the point   in Figure 19(b)) of the structure, the smallest semi-axis 

provides the correct local thickness of the structure. However, the t-scale information at   

may not be used to define local with of the structure. To accurately compute the width of 

local structure, it is important to reduce another dimension of freedom for representative 

points. In other words, the local width should be defined by the second largest semi-

principal axis of t-scale at a point (a point   in Figure 19(c)) of the arc skeleton. The 

length of the structure should be defined at the mid-point   (see Figure 19(d)) of arc-

skeleton. In the current application, t-scale is used to define the orientation and the plate-

width of individual trabeculae, thus both local trabecular width and orientation is defined 

from t-scale at points on arc-skeleton; such points will be referred to as “axial points”. 

Finally, at non-axial points, the local structure width and orientation are inherited from 

the nearest axial point. This step is solved using the classical feature propagation 

algorithm introduced in Chapter 2.3. 

Spatial discretization of voxels in a digital image puts yet another hurdle that the 

axial voxel may not coincide to the true axial point of the object in the continuous space. 

This hurdle is solved by optimizing the location of each axial point using t-scale and 

initialization at axial voxels as follows: 

begin algorithm-find-axial-points  

input: 

  : a fuzzy object  

   : the set   of axial voxels of   computed from skeletonizaion 

  : axial voxel in    
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output: 

  : closest axial point at continuous space from    

initialization: 

for all axial points      

        

repeat: 

 compute the t-scale at    with eigenvectors (  (  )   (  )   (  ))   

 compute local structure intercepts    and    at    by   (  ) and   (  ) 

 reposition    at the middle of the intercepts    and    

 until convergence of the axial point    or a maximum of three iterations 

end algorithm-find-axial-points 

In the rest of this chapter, the t-scale inherited from the nearest axial point will be 

used for characterization of local structure properties. Let   ( )  and   ( ) , where 

       , denote the three eigenvectors and eigenvalues, respectively, at a given axial 

voxel  . Relevant structural measures are demonstrated on a sample TB structure in 

Figure 20. The orientation of individual trabeculae, denoted by    ( ), is defined by the 

cosine of the angle   between the eigenvector   ( ) , corresponding to the largest 

eigenvalue, and the bone’s longitudinal axis (see Figure 20(b)). The local structure width 

at  , denoted by    ( ), may be defined using twice the length of the second largest 

eigenvalue   ( ) (see Figure 20(d)). The normalized plateness measure in the [0,1] scale, 

denoted by    ( ), is classically defined using the square of the anisotropy between the 

length of the second largest eigenvalue   ( )  and the smallest eigenvalue   ( )  as 

follows: 

   ( )  √  (
  ( )

  ( )
)

 

  

Equation 8 
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It may be noted that the above plateness measure essentially provides a 

characterization of individual trabeculae between perfect plate and perfect rod. More 

importantly, it does not require threshold values as needed in VTA. The normalized 

rodness measure    ( ) is defined as:  

   ( )       ( ) 

Equation 9 

 The entire process of t-scale based characterization may be summarized in the 

following steps. 

Step 1. Compute the axial line   for the TB structure   where   is set of all voxels 

with nonzero BVF values.  

Step 2. For each axial voxel     , derive the optmized location of the axial point 

   as described earlier. 

Step 3. At each axial point   , compute t-scale and derive TB measures –    ( ), 

   ( ),     ( ) and    ( ) as defined above. 

Step 4. At each non-axial voxel, inherit the TB measures from the nearest axial point 

as in Chapter 2.3. 

In the above algorithm, axial lines are computed as the arc-skeleton using the 

algorithm by Saha et al. [41] and the noise removal procedure presented in [41]. Feature 

propagation uses the classical algorithm introduced in [41]. Finally, several TB measures 

are defined in the following. In these equations,   represents the volume of interest (VOI) 

over which these parameters are defined,    ( ) and    ( ) are used to indicate bone 

mineral density (mg/cc) and bone volume fraction at a voxel  : 

1. Bone mineral density: 

    ∑    ( )      ⁄ , 

Equation 10 
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2. Surface width:  

     ∑    ( )   ( )   ∑    ( )   ⁄  , 

Equation 11 

3. Surface curve ratio:  

      ∑    ( )   ( )   ∑    ( )   ( )   ⁄ , 

Equation 12 

4. Longitudual bone mineral density:  

        ∑    ( )   ( )      ⁄ , 

Equation 13 

5. Transverse bone mineral density:  

        ∑ (     ( ))   ( )      ⁄ . 

Equation 14 

3.3 Experimental Plan  

The main experimental plan setup will be similar Chapter 2.4. Unlike Chapter 

2.4.3, we use ten patients (five male, five female) with selective serotonin reuptake 

inhibitor (SSRI)-treated, who have been on continuous treatment with an SSRI for at least 

one year. 

3.4 Results  

Results of t-scale assessment of TB orientation,    ( ), and plate width,    ( ), 

on a µ-CT image of a cadaveric ankle specimen are illustrated in Figure 20.    ( ) 

successfully distinguishes between the longitudinal (green) and transverse (red) 

trabeculae, Figure 20(b).    ( ) on the same µ-CT image is presented in Figure 20(d) 

and the analogous measure from VTA [41] is presented in Figure 20(e). There is strong 

agreement between t-scale- and VTA-based plate/rod classifications of individual 

trabeculae. However, at several locations (indicated by arrows in Figure 20(d-e)), the 
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gradation of TB plate-width along individual trabeculae is smoother as compared to VTA 

based results. The sharp changes in VTA based assessment of TB plate-width is primarily 

due to digitization error of path propagation. 

 

Figure 20   Characterization of TB structure analysis using the t-scale. (a) One TB region 

selected from µ-CT image of a human ankle specimen. (b) TB orientation 

analysis using t-scale. (c) Color-coding for (b). (d-e) TB characterization on 

the continuum be-tween a perfect plate (green) and a perfect rod (red) using 

the t-scale (d) and VTA (e). (f) Color-coding for (d-e). 

Results of t-scale-based plateness classification of TB network for three 

specimens with different experimental bone strengths are shown in Figure 21. An 8% 

difference in BMD from a strong bone (a) to a weak bone (c) leads to a 70% loss in bone 
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strength and manifests into about 33% difference in TB plate-width     , 30% 

difference in surface to curve ratio       measures and about 10% difference in TB 

longitudual bone mineral density       , establishing high sensitivity to bone 

degeneration. 

 

Figure 21  Illustration of the t-scale plate measure for three different TB specimens - (a) 

strong (Yield stress: 11.1MPa), (c) moderate (7.1MPa) and (d) weak (3.4 

MPa). (b) Color bar. 

3.4.1 Accuracy results 

To quantitatively examine the accuracy of the method, 3-D binary phantoms with 

different widths at 50  m resolution were generated. Then, the test phantom images were 
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generated by down-sampling binary phantoms to 150  m resolution and by adding 

Gaussian noise at signal-to-noise ratios (SNR) of 12.      was calculated over the entire 

phantom region, and error was computed as the difference between the true width and 

    . Linear correlations between the known plate width and the computed mean plate 

width using t-scale,     , and VTA,       , are shown in Figure 22. The average error 

for       was 0.364 mm compared to 0.663 mm error for        with a p-value of 0.03, 

Figure 23. 

 

Figure 22  Results of linear correlation analysis between true structure width and 

computed width using t-scale and VTA methods on computational phantoms. 
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Figure 23  Illustration of error rate for different phantoms using t-scale and VTA. 

3.4.2 Robustness under various conditions 

The t-scale method stability was evaluated using down-sampled µ-CT images of 

cadaveric specimens. Specifically, ten µ-CT images of original isotropic voxel size of 

28.5 µm were down-sampled to six isotropic resolutions of 57.0 µm, 85.5 µm, 114.0 µm, 

142.5 µm, 171.0 µm and 199.5 µm. Variability in     ,      , and        at the 

tested resolutions are illustrated in Figure 24(a-c). The error in the measures for a specific 

µ-CT image at a given down-sampled resolution was computed against the respective 

value at the original µ-CT resolution. Finally, the average error and standard deviation of 

all measures at a given resolution was computed over the ten µ-CT images, Figure 24(d-

f). Despite a wide range of down-sampling resolutions covering ex vivo to in vivo 

resolution regimes, the average error is less than 6% for all t-scale measures. These 

results demonstrate high stability for the new t-scale computation method across a wide 

range of resolutions. 
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Figure 24 Illustration of the stability of the t-scale algorithm across different image 

resolutions. (a-c) The mean plate width measures      (a), the mean surface 

to curve ratio       (b) and longitudual bone volume fraction        (c) 

over a cylindrical VOI change as the resolution changes. (d-f) The Errors of 

the corresponding measures      (d),        (e), and        (f) as the 

resolution changes compared to the average thickness from all ten images. 

To further examine the stability of the algorithm under different resolutions, the 

correlation between t-scale measures computed from ex vivo µ-CT and in vivo MD-CT 

imaging was examined. In the previous experiment, different resolutions were obtained 

computationally, while the current experiment examines the stability of the method 

between two different modalities in the presence of modality-dependent artifacts. 

Matching axial image slices from post-registered µ-CT and MD-CT images of a 
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cadaveric specimen are presented in Figure 11. The trabecular structures are generally 

wider in MD-CT imaging due to a larger modulation transfer function (MTF). The linear 

correlation between the MD-CT and µ-CT modalities was high for all TB measures;    

values are listed in Table 3: 

Table 3  Results of linear correlation (   values) of different TB measures 
between MD-CT and µ-CT 

TB strength 

parameters 

T-scale VTA 

                               

MD-CT / µ-CT 0.84 0.82 0.82 0.81 0.81 

 

3.4.3 Reproducibility analysis 

Three repeat MD-CT scans of fifteen cadaveric ankle specimens were used to 

examine reproducibility. Ten spherical VOIs were randomly selected in the first MD-CT 

scan of each specimen (150 total VOIs). Every VOI was at least 8 mm proximal to the 

distal endplate. A post-registration algorithm was used to locate the matching VOIs in the 

second and third repeat scans. Reproducibility was tested at increasing VOI sizes. The 

relationship between the method reproducibility and VOI size is presented in Figure 25. 

     at a VOI diameter of 1.05 mm or greater has an intra-class correlation coefficient 

(ICC) that exceeds 0.95. Conversely,       requires a VOI diameter of 3.15 mm to 

achieve equivalent reproducibility in terms of the ICC. For surface to curve ratio 

measures, both methods reach an ICC value of 0.95 with a VOI diameter of 3.15 mm or 

larger.         reaches an ICC value of 0.95 with a VOI diameter of 5.85 mm or larger. 

The VOI diameter that achieves an ICC value of 0.95 represents the smallest region over 

which the measures can be reliably computed. In the case of surface width, the t-scale 
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algorithm proved to be considerably more reliable as the value stabilized at a much 

smaller VOI diameter. 

 

Figure 25  Illustration of repeat MD-CT scan ICC values at different VOI diameters 

using both the t-scale and VTA. (a) At a VOI diameter of 1.05 mm or greater, 

the ICC value of plate surface width      using t-scale exceeded the mark of 

0.95, while the measure using VTA requires a VOI diameter of 3.15 mm or 

greater. (b) At a VOI diameter of 3.15 mm or greater, the ICC value of surface 

to curve ratio       using both t-scale and VTA exceeded the mark of 0.95. 

(c) The ICC value of longitudual bone volume fraction        at different 

VOI diameters. 

3.4.4 Predicting bone strength 

Quantitatively, the ability of t-scale measures to predict bone strength was 

evaluated by a linear correlation analysis between each measure and the experimental 

Young’s modulus and yield stress assessed by mechanical testing. The image-based 

measures were computed over a cylindrical VOI as described in Chapter 2.4.5. The 

correlation analysis using the t-scale measures are shown in Figure 26(a-c) while the 

results using the VTA measures are shown in Figure 26(d,e). The    values of the linear 

correlation between Young’s modulus and the different image-based measures are 

presented in Table 4.  A “leave-one-out” strategy was used to determine the error of the 

different measures in predicting bone strength, Equation 15. 

  √
∑ (     )  

   
∑   

  
   

⁄   

Equation 15 
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where   is the total number of specimens,    is the predicted bone strength of the 

left out specimen  , and    is the actual bone strength. The results are shown in Table 5. 

Table 4  Results of linear correlation (   values) between different TB 

measures and experimental TB strength parameters. 

TB strength 

parameters 

T-scale VTA  

       

 

                             

Young’s Modulus 0.79 0.82 0.83 0.85 0.78 0.78 

Yield stress 0.92 0.91 0.92 0.87 0.92 0.79 

 

 

 

Figure 26   Ability of different TB measures using the t-scale-based method to predict 

bone strength shown in terms of    values of linear correlation between yield 

stress and each of      (a),       (b), and       . (d,e) Same as (a,b) but 

for the VTA method [116]. 
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Table 5  Results of “leave-one-out” method for different TB measures in 

predicting bone strengths 

TB strength 

parameters 

T-scale VTA  

       

 

                             

Young’s Modulus 19.18% 17.54% 21.86% 18.50% 19.41% 23.42% 

Yield stress 14.21% 14.98% 14.49% 18.73% 13.94% 23.93% 

 

 

 

The t-scale measures of     ,       and        correlated higher with yield 

stress compared to Young’s modulus. All architectural measures, by t-scale and VTA, 

were better predictors on yield stress as compared to     , both by linear correlation 

and leave-one-out analysis. Due to the limited sample size, none of the differences in 

Table 4 reached statistical significance. Nevertheless, this underscores the importance of 

considering bone micro-architectural information in addition to bone mass measures 

when assessing bone health and fracture risk. Furthermore, it demonstrates the ability of 

t-scale derived architectural measures to capture bone strength information from MD-CT 

images at in vivo resolutions. 

3.4.5 Results of in vivo pilot study 

Male/Female Comparison: To evaluate the effectiveness of the method, in vivo 

MD-CT data of twenty male and twenty female volunteers (19Y to 21Y) were used to 

form body mass index (BMI) -matched male-female pairs. The BMI was 24.34   3.08 

kg/m
2 

(mean   SD) for males and 22.99   2.27 kg/m
2
 for females, with an    value of 

0.96 for the two ordered groups of BMIs. T-scale measures (structure plate-width     , 

surface to curve ratio      , and longitudual bone mineral density        ) were 
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computed for the forty volunteers over the ROI discussed in Chapter 2.4.6. The results 

are contoured on a 3-D representation of the TB structure for one male-female pair in 

Figure 26. Males on average have 15.7% wider      and 16.3% higher       as 

compared to females. Paired t-test results showed the differences were statistically 

significant with p-values 0.05 for both measures.        wasn’t significantly different 

between male and female volunteers.  

 

Figure 27  Illustration of the t-scale plate-width measure for in vivo imaging on an age-

BMI-similar female and male pair: (a) female healthy volunteer and (b) male 

healthy volunteer. 

SSRI/Control Comparison: In vivo MD-CT data from ten patients on SSRI treatment 

(five male and five female) were processed. A control group was formed by selecting 

gender-BMI-matched controls for the SSRI group participants from the forty healthy 

volunteers. The mean BMIs were 26.17 ± 2.68 kg/m
2
 for the SSRI group, and 26.76 ± 

3.08 kg/m
2 

for the control group, and    for the two groups of BMI is 0.988. The results 

indicate that the SSRI group had narrower     , lower      , and lower       . The 

results are contoured on a 3-D representation of the TB structure for one SSRI group 

volunteer and the gender-BMI-matched healthy control volunteer in Figure 28. 

Quantitative results show that the SSRI group, on average, had 16.8% lower     , 13.5% 
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lower      , and 1% lower        as compared to the gender-BMI-matched healthy 

controls. Results of paired t-tests showed the differences were statistically significant 

(p<0.0001 for     , p<0.05 for       and       ). This study demonstrates the 

ability of the technique to differentiate between healthy and degenerative bone from 

images at in vivo resolution. Particularly, SSRI treatment affected      and       to a 

greater extent by than      indicating that TB structure properties are more greatly 

affected than changes in bone mass. Coupled with the increased predictive value of  

     and       with respect to yield stress as compared to     , it may be that SSRI 

treatment affects bone fracture risk to a greater extent than traditional, bone mass 

centered techniques would suggest. 

 

Figure 28  Same as Figure 27, but comparison between an age-sex-BMI-similar SSRI 

patient and a non-athlete: (a) health volunteer and (b) SSRI patient 

3.5 Conclusion 

An improved 3-D t-scale algorithm for fuzzy digital objects was presented. 

Results of a comprehensive study on computer-generated phantoms and fifteen cadaveric 

ankle specimens evaluating the new method were presented. Observed results 

demonstrated encouraging accuracy and stability of computed t-scale measures under 
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large different resolutions and different imaging modalities. Also, high repeat MD-CT 

scan reproducibility of the new t-scale computation method was observed in the 

cadaveric ankle study. T-scale computed plate-width and surface to curve ratio measures 

demonstrated higher ability to predict trabecular bone’s experimental mechanical 

properties under in vivo conditions as compared to bone mineral density and previous 

proposed VTA methods. Currently, we are investigating the power of the new method to 

characterize clinical groups in terms of their bone health. Also, in vivo data from forty 

age similar and BMI order matched male and female volunteers demonstrated that males 

have significantly wider trabecular bone width, higher surface to curve ratio. By 

comparing the patient group using SSRI treatment with gender-BMI-matched healthy 

controls, we found that the patient group using SSRI treatment have significant narrower 

trabecular bone width, lower surface to curve ratio and lower longitudual bone mineral 

density.  
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CHAPTER 4. TRABECULAR BONE THRESHOLDING 

In this chapter, we will introduce the thresholding of TB structure in CT imaging. 

The segmentation techniques for medical imaging are now pretty mature and there are a 

lot of existing advanced segmentation algorithms existing. As mentioned above, for our 

study, most images are in CT modality: MD-CT and µ-CT imaging. There are two big 

advantages from analyzing bone structure in CT images: 1) the bone structures have the 

highest intensity range in CT images, and 2) the intensity values for different tissues are 

highly reproducible. Based on those two observations, thresholding is utilized as the main 

algorithm for segmentation and the results are shown to be reliable. Here, we developed a 

new thresholding method combining class uncertainty and gradient information which 

would give accurate threshold for segmentation. 

Novel research works in the current as presented in this chapter: 

1) Development of a new thresholding method combining class uncertainty and 

gradient information. 

2) Formulation of a new energy function to form a 2-D surface with intensity and 

gradient information. 

3) Introduction of the novel intrinsic basin. 

Automatic selection of a robust and accurate threshold parameter has remained a 

challenge in image segmentation. Over the past five decades, many automatic threshold 

selection methods have been reported in the literature. [154, 155, 158, 188-205] late 80’s, 

Sahoo et al. [203] published a survey of optimum thresholding methods, while Lee et al. 

[204] reported results of a comparative study of several thresholding methods. Glasbey 

[205] published results of another comparative study involving eleven histogram-based 

thresholding algorithms. A relatively recent survey of thresholding algorithms for change 

detection in a surveillance environment has been presented by Rosin and Ioannidis. [158] 

Among early works on automatic thresholding, Prewitt and Mendelson [201] suggested 
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using valleys in a histogram, while Doyle [202] advocated the choice of median. Otsu 

[188] developed a thresholding method maximizing between-class variance. Tsai [191] 

proposed a choice of threshold at which resulting binary images have identical first three 

moments where the ith moment is defined by the sum of pixel intensity values raised to 

the ith power. Later works on thresholding methods have utilized entropy of original and 

thresholded images to construct an optimization criterion. For example, Pun [192] 

maximized the upper bound of posterior entropy of histogram. Wong and Sahoo’s 

method [193] selects optimum threshold that maximizes posterior entropy subjected to 

certain inequality constraints characterizing the uniformity and shape of segmented 

regions. Pal and Pal [194] utilized the joint probability distribution of neighboring pixels 

which they further modified [195] using a new definition of entropy. Kapur et al. [196] 

proposed a thresholding method by maximizing the sum of entropies of segmented 

regions and a similar method was reported by Abutaleb [197] that maximizes 2D entropy. 

The method by Brink [198] maximizes the sum of entropies computed from two 

autocorrelation functions of thresholded image histograms. Li and Lee’s method [154] 

minimizes relative cross entropy or Kullback-Leibler distance between original and 

thresholded images. Kitler and Illingworth [155] developed a thresholding method by 

minimizing segmentation errors defined from an information-theoretic perspective, while 

Dunn et al. [199] used a uniform error criterion. Leung and Lam [200] developed a 

method that maximizes segmented image information derived using an information-

theoretic approach and demonstrated that their method is better than the methods based 

on minimum and uniform errors. [155, 199]  

Although, Wong and Sahoo, [193] and Pal and Pal [194, 195] incorporated some 

spatial image information to their methods, others are mostly histogram-based techniques. 

One common shortcoming of a purely histogram-based approach is that it fails to utilize a 

significant amount of information embedded in image features formed by spatial 

arrangements of intensity values. Often, it is not possible for a human observer to select a 
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threshold in an image just from its histogram without seeing the original image. On the 

other hand, the image may contain clear partitions of different objects or tissue regions 

and it may only be a trivial task to select the threshold from the image. This observation 

inspired us to develop a method that directly makes use of impressions created on the 

image by different object interfaces. Class uncertainty is byproduct information of object 

classification and it’s often ignored in the context of computer vision and imaging 

applications. In our previous work, it was demonstrated that high class uncertainty, 

commonly associated with intermediate intensity values between two object classes, 

appears at the vicinity of object or tissue interfaces in an image. This observation 

provides a unique theory relating histogram-based information with image-derived 

features. A new energy formulation is designed as a function of both intensity and 

gradient parameters and new algorithms are developed to automatically detect optimum 

pairs of threshold and gradient parameters on the energy surface for different tissue 

interfaces. 

4.1 Class Uncertainty 

Here we define class uncertainty based on priors possiblility and describe its 

relation with the gradient feature derived from spatial distribution of image intensity 

values. Let us consider a simple example of Figure 29 containing an object and a 

background region with their prior intensity distributions. Image points with intensity 

value of either    or    will be classified as object points; however, the class-uncertainty 

values for these two cases are significantly different. Specifically, points with intensity 

value    should possess significantly high class-uncertainty as compared to those points 

with intensity value   . The relationship between class-uncertainty and image features 

may be better understood with the help of a real image. Figure 30 illustrates the idea on 

an image slice from a lower abdominal CT slice. The image depicts several regions, 

including fat/skin, bladder, muscles and bone which are partially separable using 
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intensity thresholding. Three threshold values are manually picked on the intensity 

histogram (Figure 30(b)) of the CT image slice (Figure 30(a)) among which two 

thresholds, namely     and    , separate meaningful tissue regions (Figure 30(c,e)), 

while     is intentionally selected as a bad threshold not representing any meaningful 

tissue region (Figure 30(g)). It should be noted that class-uncertainty images 

corresponding to thresholds     and     trace respective tissue boundaries (Figure 

30(d,f)), while that for the wrong threshold     doesn’t and the uncertainty image shows 

high values all over the homogeneous region (Figure 30(h)). 

 

Figure 29  An illustration of the relationship between prior class distributions and class 

uncertainty for a two class problem. It should be noted that class uncertainty is 

maximum around the threshold selected under minimum-error criterion. Image points 

with intensity values of either    or    are classified as object points. However, the 

class-uncertainty associated with points having intensity    is significantly higher 

than that for points with intensity   . 
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Figure 30  An illustration of the relationship between class uncertainty and tissue 
interfaces under different conditions of thresholding. (a) An image slice from a CT 

data of a patient’s lower abdomen. (b) Image intensity histogram for (a) with three 

thresholds marked as    ,     and    . The first two thresholds are manually selected 

to segment proper tissue regions while the third one is intentionally picked as a bad 

threshold. (c,d) Thresholded tissue regions and class uncertainty image for the 

threshold    . (e,f), (g,h) Same as (c,d) but for thresholds     and    , respectively. 

Note that class-uncertainty images in (d) and (f) depict respective tissue boundaries 

while the same in (h) fails to indicate any tissue interface and spills out into the 

entire soft tissue region. 

An important observation in the above example is that, when proper thresholds 

are selected to separate different tissue regions, corresponding class-uncertainty maps 

depict interfaces among respective regions. On the other hand, when a visually incorrect 

threshold is selected, the class-uncertainty map no longer describes a region boundary. 

This correlation between the two independently defined features lays the theoretical 

foundation for our method, which is stated in the following postulate [206].  

Postulate 1  In an image with fuzzy boundaries, under optimum partitioning of 

object classes, intensities with high class-uncertainty appear around object boundaries. 

Although it is difficult to prove or disprove the postulate because of its nature, its 

validity can be justified on images as demonstrated in Figure 30 and the other 

experimental results presented in this chapter.  
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Here, we formulate the mathematical expression for class-uncertainty from priors 

using Bayes’ rule [207] and Shannon and Weaver’s entropy equation [208]. An image 

can be described by its intensity function       , where   denotes the set of integers 

and   denotes the set of real numbers. In most acquired digital images, intensity values 

are readily available at points with integral coordinates which are called a “pixel” in two-

dimension (2D) and a “voxel” in three-dimension (3D); we denote the set of all pixels or 

voxels in an image as  . Let      and      represent the hypothetical true object and 

background regions, respectively, in an image. Let   ( )     or   denote the prior 

probability distribution for object/background region defined as follows:  

  ( )   ( ( )        ) 

Equation 16 

where   represents “probability”,   denotes an image point and   is a given 

intensity value. Let   denote the density for object points so that     is the density for 

background points. Therefore, the probability of any point   having intensity value  , 

denoted by  ( ), may be expressed as follows: 

 ( )     ( )  (   )  ( ) 

Equation 17 

Using the above priors, the posterior probabilities are defined by Bayes’ rule, i.e., 

 (      ( )   )  
   ( )

 ( )
 

Equation 18 

 (      ( )   )  
(   )  ( )

 ( )
 

Equation 19 

Finally, the class-uncertainty measure [206]           at a point   with 

intensity value   is defined as the entropy of the above two posterior probabilities which 

is defined by the Shannon and Weaver’s entropy equation [208], as follows: 
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 ( )   
   ( )

 ( )
   

   ( )

 ( )
 

(   )  ( )

 ( )
   

(   )  ( )

 ( )
 

Equation 20 

Here, the idea is to model the prior probability distributions    and    and the 

density parameter   as a function of the selected threshold t and the gradient parameter  . 

Thus, the class-uncertainty map of an image varies as a function of threshold   and 

gradient parameter  ; we use     ( )  to denote the threshold and gradient-dependent 

class-uncertainty function. 

It’s not difficult to find out from Equation (4) that the class uncertainty measure 

always lies in the normalized scale of [0, 1]. On the other hand, image gradient is 

measured in the image intensity scale. Therefore, a meaningful formulation of the energy 

function using Postulate 1 entails a normalized measure for image gradient values. To 

overcome this issue, a gradient parameter   is introduced, which needs to be optimized 

and, quite possibly, the parameter may not remain constant for different tissue interfaces. 

Many models can be adopted to normalize the gradient measure; here a Gaussian model 

is used to compute a normalized measure    of intensity gradients using the control 

parameter σ as follows: 

  ( )     
 

( ( )) 

    
Equation 21 

where   is an intensity-gradient operator and    is a normalized gradient 

parameter. Using these two normalized measures of class uncertainty and image gradient, 

the energy function   is formulated as follows: 

 (   )  ∑[    ( ( ))  (    ( ))  (      ( ( )))    ( )]

   

 

Equation 22 

Following the above equation, each point   contributes a large amount of energy 

if it falls in any of the following two categories – (1) class uncertainty is high and 



www.manaraa.com

86 
 

 

8
6
 

gradient is low, or (2) class-uncertainty is low and gradient is high. It should be noted that 

each of these two situations is a contradiction to Postulate 1. To some extent, the energy 

function   is formulated as an aggregate measure of contradictions to Postulate 1 over the 

entire image. On the other hand, if a pixel   has both high class uncertainty and high 

gradient or low value for both measures, it’s in agreement with Postulate 1 and only 

contributes a small amount of energy. It should be noted that, under any of these two 

conditions, each of the two components on the right hand side of Equation 22 takes a 

small value (close to ‘0’) due to the multiplication between a high (close to ‘1’) and a low 

(close to ‘0’) value, therefore, the sum of the two components is always a small value. 

4.2 Optimum Threshold Selection 

In the previous chapter, we have formulated an energy function   that captures 

the correlation between image gradient and class uncertainty as guided by Postulate 1. 

Specifically, the energy function is formulated as an aggregate measure of contradictions 

to Postulate 1 by all points in an image and is expressed as a function of threshold and 

gradient parameters   and  , respectively. Thus, the energy function   essentially forms 

an energy surface over the parametric space of   and   and an optimum choice of 

threshold and gradient parameters representing an object interface can be found by 

identifying a meaningful depression on the energy surface. 

Because the search space is only two-dimensional over a limited range of values 

for   and  , we adopt an exhaustive search technique. Therefore, the most critical factor 

here is to define the geometry of optimum locations on the energy surface. For the 

threshold parameter  , the entire intensity range             is used for searching 

optimum locations. On the other hand, search-space for the gradient parameter   is limited 

to     (         )     (         ) ; we stay away from the extreme values 

of   to reduce computation burden and also, to avoid computational instability. We 

determine two types of optimum locations on the energy surface – a Type I optimum 
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location forms a meaningful or valid pit on the energy surface   while a Type II optimum 

location forms a meaningful valley on  . Let    
 denote the energy function for a given 

value    of the gradient parameter and thus, only the threshold parameter is varied. 

Therefore,    
 forms an energy curve for the gradient parameter value   . A local 

minimum on the energy surface   is referred to as a pit while a local minimum on an 

energy line    
 is referred to as a valley point. Depending upon the resolution of the 

search-space, both   and    
 can contain a large number of noisy local minima. Here, we 

use the idea of intrinsic basin, an idea similar to catchment basins used in watershed 

segmentation methods [209, 210], to distinguish between noisy and meaningful local 

minima. Let (     ) denote the parameter values at a pit, i.e., a local minimum on the 

energy surface  . The intrinsic basin of (     ), denoted by  (     ), is the set of all 

locations (   ) such that there exists a path from (   ) to (     ) with all points on the 

path having energy values greater than or equal to  (     ) . Essentially,  (     ) 

corresponds to the region on   that can be flooded by pouring water from top at  (     ) 

without water leaking to a location with energy value less than  (     ). An intrinsic 

basin    
( ) for a valley point (     ), i.e., a local minimum on the energy curve    

 is 

defined similarly. The idea of intrinsic basin on an energy line    
 is illustrated in Figure 

31. The black line in Figure 31 denotes the energy line over the entire intensity range 

            and each local minimum on the line represents a valley point. Different 

colors are used to indicate different intrinsic basins; however, one intrinsic basin can 

include multiple colors. For example, the intrinsic basin marked in blue on the right side 

of the figure can include the regions marked in yellow and cyan, along with the two small 

regions marked in red. The depth of a basin is defined as the height of its topmost layer 

with respect to its bottom. A pit (or, a valley point) is considered as a valid pit 

(respectively, a valid valley point) if the height of its intrinsic basin covers at least 3% of 

the maximum variation in the energy surface   (respectively, the energy line   ). The 

maximum variation for the energy curve   , illustrated in Figure 31, is the depth of the 
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grey basin. Depths of basins marked in red are less than 3% of the maximum variation, 

thus fail to quality as valid valleys; all other basins in Figure 31 qualify as valid valleys. 

The choice of the parameter value of 3% for validity check was selected as it was 

experimentally observed that the height of intrinsic basins for noisy points were small 

and was always less than 1%. Therefore, the parameter value of 3% ensures exclusion of 

all noisy points. 

 

Figure 31  An illustration of intrinsic basins on an energy line    
. Different colors are 

used to indicate different intrinsic basins; however, one intrinsic basin may 

include multiple colors. For example, the intrinsic basin marked in blue on the 

right side includes all the regions marked in yellow and cyan along with the 

two small regions marked in red. All invalid valley points are marked red and 

others represent valid valley points. 

In our experiments, both energy surfaces and curves are mostly found to be 

smooth functions, except for tiny fluctuations, especially over flat regions. The primary 

objective of adding a validity constraint on pits and valley points using intrinsic basins is 

to avoid such small fluctuations, while capturing all meaningful local minima. Each valid 

pit is considered as a Type I optimum location for threshold and gradient parameters. A 
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meaningful valley is defined as an 8-connected path [37, 174] of valid valley points for 

contiguous values of the gradient parameter. Finally, a Type II optimum point is defined 

at the center of a meaningful valley containing no pit or Type I optimum location. 

An example of the energy surface/function and detected optimal locations are 

illustrated in Figure 32. For the current example, three valley lines, marked as red lines, 

were identified on the energy surface, among which two were associated with pits or 

Type I optimal locations (hollow black circle), while one valley had no pit on it. For the 

valley with no pit, a Type II optimal location (hollow red circle) was detected, following 

the algorithm described the above. 

 

Figure 32  An illustration of different types of optimum locations on an energy 

surface/function. The energy function is rendered using a 3D MATLAB 

display function, with color indicating the energy value (red: high, blue: low). 

Here, valley lines are shown in red; Type I (pit) and II optimum locations on 

the energy surface are denoted by hollow black and hollow red circles, 

respectively. 
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4.3 Experimental Plan and Results 

To examine the effectiveness of the proposed thresholding algorithm, it was 

compared with Otsu’s method [188] and several other popular thresholding methods [198, 

200, 206]. Although, the thresholding method by Otsu was proposed three decades ago, it 

has become quite popular because of its classical theoretical foundation. Recently, the 

method has been implemented within the ITK library [211] and has been used in several 

medical imaging [212-217] and other applications [218-221]. Essentially, the method is 

based on minimization of the class density weighted within-class variance which is also 

equivalent to maximization of between-class variance. A limitation of Otsu’s method is 

that it requires that the number of tissue regions must be specified. In our experimental 

setup we used Otsu’s method with the correct number of tissue regions specified by users. 

On the other hand, for the proposed method, this number is detected automatically by the 

algorithm. Also, we have compared the performance of the new method with the 

minimum error (ME) [155] and maximum segmented image information (MSII) [200] 

thresholding algorithms along with our previously published minimization of 

homogeneity- and uncertainty-based energy (MHUE) thresholding algorithm [206]. The 

principle of ME thresholding algorithm is to find the threshold that gives minimum 

classification error defined as follows. For a given threshold, an image is partitioned into 

two regions and the normal distribution of intensity values within each partition is 

determined. The classification error is determined as the average fraction of the normal 

intensity distribution of one partition falling inside the intensity range of the other. The 

principle of the MSII thresholding algorithm is based on maximization of segmented 

image information defined as the difference between initial scene uncertainty, computed 

from the original image, and residual uncertainty computed from the thresholded image. 

In the MHUE [206] thresholding algorithm, the class uncertainty theory is combined with 

a rank-based normalized measure of region homogeneity to formulate the criterion of 

threshold optimization.   
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Experiments were designed to evaluate both the accuracy and reproducibility of 

the new method and to compare with the other methods: 1) the accuracy of a method was 

computed by comparing its results with manual thresholding except for phantom data 

where truths were known. 2) The reproducibility was computed using repeat scan MD-

CT data of cadaveric ankle specimens. In order to reduce subjectivity artifacts by 

individuals for accuracy analyses on clinical data, the mean of threshold values selected 

by three independent users for a given interface was used as truth. Toward defining an 

error measure between a computer-selected threshold   and a true threshold  , an 

important observation made was that pixel/voxel density is non-uniform over the 

intensity range. Therefore, a straight-forward difference between   and   may not be a 

good choice for error measure. Let                 , where    is the set of positive 

integers, denote the image intensity histogram function. The value of  ( ) denotes the 

pixel/voxel density at the intensity value  . We use the following error function which 

essentially represents the pixel/voxel density weighted distance between   and   in the 

normalized scale of [0,1] defined as follows: 

     (   )  
∑  ( ) 

   

∑  ( )
    
      

 

Equation 23 

where  ( ) represents the intensity histogram of the test image. The idea of the 

above error measure is graphically illustrated in Figure 33. When there are multiple true 

thresholds   ,   ,   , … and computed thresholds   ,   ,   , … for different object 

regions, for each true threshold   , the closest computed threshold    is used for 

estimating the error. In the following, we describe different image data sets used in our 

experiments. 
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Figure 33  A graphical illustration of the error measure between a selected threshold s 

and the true threshold  . Essentially, it computes the pixel/voxel density 

weighted distance (the area of the grey region) between the two thresholds and 

normalized by image size, i.e., the total area under the histogram. 

CT image of cadaveric ankle specimens: Four cadaveric ankle specimens were 

scanned in a Siemens Sensation 64 Multi-slice CT scanner at 120 kVp and 140 mAs and 

a pitch of 0.8 to adequately visualize the bony structures. After scanning in a helical 

mode at a slice thickness of 0.6 mm and collimation of 12 0.6 mm, the image was 

reconstructed at 0.3 mm slice thickness with a normal cone beam method utilizing a very 

sharp kernel of U75u to achieve high image resolution. Image parameters for these scans 

were as follow: matrix size = 512 512 pixels; number of slices = 334 to 336 and pixel 

size = 152 μm. Each ankle specimen was scanned three times after repositioning on the 

table. This CT data set was used for both accuracy and reproducibility analysis. 

4.3.1 Accuracy analysis 

Results of application of the method on 3-D CT images are presented in Figure 34. 

The new method successfully detected three thresholds producing visually satisfactory 
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segmentation of four regions, namely background (black), fat/skin (red), muscle (green), 

and bone (white). Salt and pepper noise, especially over thresholded regions for fat/skin 

and muscle (Figure 34(d)), was caused primarily by low contrast-to-noise-ratio between 

the two regions which disappeared after applying a simple smoothing filter (Figure 34(e)). 

More interesting, the amount of noise on each of the two regions is more or less similar 

indicating that the method selected the threshold nearly at the middle between mean 

intensities for the two regions. In Figure 34(b), the second threshold on the intensity 

histogram of the 3D image represents the threshold for the interface between the two 

regions which is located near the second pick of the histogram. Just by looking at the 

histogram, it’s almost impossible to select this threshold. On the other hand, the two 

regions, therefore, the interface threshold is clearly visible in the image which allowed 

our algorithm to automatically detect the threshold. As shown in Figure 34(c), each of the 

first two thresholds led to pits (Type I optimum locations), while the third threshold 

produced only a valley (Type II optimum location). The class uncertainty image at 

different thresholds successfully depicts different interfaces with different colors. Otsu’s 

method has failed to produce visually satisfactory results for this example. Also, ME and 

MSII thresholding methods have failed to find thresholds for all three tissue interfaces in 

these images, significantly increasing error measures. For this specific specimen, the 

MHUE has produced almost similar results (Figure 34(l)) as produced by the new 

algorithm.  

For quantitative accuracy analysis, the gold standard threshold for each interface 

for each image was determined as the average of the thresholds selected using a graphical 

user interface by three independent users to reduce the effect of inter-user subjectivity 

errors. For a given CT image and a specific tissue interface, the threshold error by one 

method was determined from the true threshold and the closest computed threshold 

according to the error definition presented in Chapter 4.3. Finally, for a given image, the 

threshold error was computed as the sum of errors over all interfaces. Image threshold 
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errors for twelve images by the five methods are illustrated in Figure 35. Also, the 

standard deviation of threshold errors for different interfaces in an image is indicated in 

the figure. The new method has clearly outperformed the ME and MSII thresholding 

methods. Average image threshold errors by Otsu’s and MHUE methods are 20.78% and 

8.57%, respectively, while that by the new method is only 2.75% indicating a great 

reduction as compared to Otsu’s and MHUE methods, respectively. Also, the standard 

deviation of threshold errors for different tissue interfaces by the new method is relatively 

small for all images indicating the consistency of our method in selecting the threshold 

for different tissue interfaces. Average image threshold error was measured by adding 

errors from all interfaces. For example, each set of ankle CT data used here has three 

tissue interfaces; therefore, the average interface threshold error by our method should be 

0.92% computed by dividing the total image threshold error of 2.75% by three. We 

performed a paired t-test of threshold errors by the new, the Otsu’s and the MHUE 

methods using the error values for all three interfaces in all images. The average 

threshold errors for an interface by Otsu’s, MHUE and the new methods are 6.93%, 

2.86% and 0.92%, respectively, and the null hypothesis was rejected with p-value < 0.001 

for comparisons between the new and either of Otsu’s or MHUE methods. 
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Figure 34  Results of application of different thresholding methods on a CT image slice 

of lower abdomen. (a) Original CT image slice. (b) Optimum thresholds (red 

lines). (c) The energy surface with valley lines (red) and optimum threshold 

and gradient parameters (hollow circles). (d) Thresholded regions in different 

colors as applied to the original image. (e) Same as (d), but applied to a 

smoothed image. (f) Object class uncertainty maps at different optimum 

thresholds. Note that the class uncertainty image highlights different tissue 

interfaces at different optimum thresholds. (g,h,i) Same as (b,d,e), respectively, 

but for Otsu’s method. (j,k,l) Results of thresholding as obtained by the MSII, 

ME, MHUE algorithms, respectively. 
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Figure 35  Results of quantitative analyses of image threshold errors by different 

methods. For each ankle CT image, indicated by a number between one and 

twelve on the horizontal axis, height of the bar indicates the percentage image 

threshold error. The line one each bar denotes the standard deviation (in 

percentage scale) of threshold errors for different interfaces of an image. 

4.3.2 Reproducibility analysis 

Data from three repeat CT scans of four cadaveric specimens were used for 

reproducibility analysis. We performed two reproducibility analyses as follows:  

Experiment 1: For this experiment, repeat CT scans were used to examine the 

reproducibility of threshold values for different interfaces and specimens. From every CT 

image, we extracted three data values, each representing the threshold value for one of 

the three tissue interfaces (see Chapter 4.3.1). Thus, altogether there were twelve events, 

each representing the threshold for a specific interface in a given specimen (Figure 36 (a-

c)). The threshold value computed from each repeat CT scan was considered as a repeat 

observation of the event; thus, there were three repeat observations. Results of this 
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experiment are presented in Figure 36(a-c), showing high repeat scan reproducibility for 

all three methods, except that the MHUE algorithm has underperformed for one specimen 

(specimen-interface number 5), where it missed the threshold for one tissue interface.  

Experiment 2: The purpose of this experiment was to examine whether a method 

reproduce the same threshold for a specific tissue interface in different specimens. The 

argument behind this experiment is that, in CT images, intensity values for different 

tissues are highly reproducible [222] and therefore, different methods should produce 

similar thresholds for a specific interface in different specimens. For this experiment, we 

used the data from first CT scan for each of the four specimens. Here, threshold of a 

given tissue interface is considered as an event leading to three events for three interfaces. 

On the other hand, the threshold values of the specific tissue interface computed from 

different specimens are treated as repeat observations leading to four observations for 

each event. Results of this experiment for the new, Otsu’s and MHUE methods are 

presented in Figure 36(d-f). ICC values for the three methods under this experiment are 

0.999, 0.865 and 0.976, respectively. Similar results were found using images from other 

two scans. 

Results of above two experiments show that all three methods successfully 

reproduce a threshold in repeat scans for a specific interface in a given specimen. 

However, Otsu’s method has failed to guarantee high reproducibility of the threshold for 

a specific interface in different ankle specimens which is expected to be similar in CT 

images. The MHUE method is less robust in detecting all different tissue interfaces in 

images resulting reduced ICC values in both reproducibility experiments. The new 

method has shown high reproducibility under both experiments. In repeat CT scans of a 

given specimen, histograms are similar; on the other hand for different specimens, there 

were significant variations in histograms due to differences in tissue proportions. It 

explains the behavior of Otsu’s method in above two experiments. 
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Figure 36  Results of reproducibility analysis and intra-class coefficient (ICC) of 

threshold values in repeat CT scans. (a) ICC for threshold values of different 

tissue interfaces of four specimens in three repeat scans using the new 

method. (b) Same as (a) but for Otsu’s method. (c,d) Same as (a,b) but for 

ICC value of thresholds for matching interfaces in different specimens using 

the first CT scan. 

4.4 Conclusion 

In this chapter, we have presented a new method for simultaneously computing 

optimum values for thresholds and gradient parameters for different object interfaces. 

The method has been applied on several medical image data sets. For every example 
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presented here, the new method has successfully determined the number of object/tissue 

regions in the image and also detected visually satisfactory thresholds for different tissue 

interfaces even when some of the thresholds are almost impossible to locate in their 

histograms. Although, the method provides the optimum gradient parameter for each 

interface in an image, the accuracy and reproducibility of this parameter has not been 

examined in this chapter. The performance of the method has been compared with two 

types of methods – (1) methods with automatic detection of the number of object regions 

(ME, MSII, MHUE) and (2) methods with a pre-defined number of object regions (Otsu). 

Results of comparative experiments have shown that the new method significantly 

outperforms the other two methods (ME and MSII) under the first category. Results of 

comparison with Otsu’s method has shown that, given the predefined number of object 

regions, Otsu’s method produce visually similar results to our method where the 

thresholds are visible (e.g., a local plateau) on the histogram. However, Otsu’s method 

being a purely histogram-based algorithm; it could fail to properly select a threshold 

when it is located near a local top on the histogram (Figure 34). On the other hand, our 

method effectively utilizes spatial information by combining the image gradient with 

class uncertainty. Therefore, although, the information on the histogram is not good 

enough to select the right threshold, the new method fills the gap by using spatial 

information. Further, one major advantage of the current method over Ostu’s method is 

that the new method does not require any pre-defined number of object regions in an 

image which itself is a significant improvement. Even for the examples where Otsu’s 

method produce results visually similar to the new method, quantitative analyses of 

accuracy and reproducibility have shown that the new method is superior to Otsu’s 

method. As compared to the MHUE algorithm, the improvement in performance of the 

new algorithm is enhanced as higher levels of imaging artifacts by noise, intensity non-

uniformity and resolution. Also, the MHUE algorithm was found less robust in detecting 

thresholds for all tissue interfaces. 
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CHAPTER 5. DISCUSSION AND FUTURE WORK 

In this chapter, we will discuss the ultimate goal of this research work, the 

limitations of the current work, and possible future work based on the current results.  

5.1 Ultimate Goal the Research 

The ultimate goal of our current research is to establish a new group of criteria in 

early osteoporosis diagnosis using TB architectural measurements, including TB 

thickness, marrow spacing, plate/rod characterization and orientation, that can be used to  

effectively prevent osteoporotic fragility fracture. 

A great deal of clinical research has been done regarding the relationship between 

the risk of fracture and osteoporosis [223-226]. Gay [226] led a study regarding 136 

patients at an average of 10.6 years after distal radial fracture, discovered that 37.6% of 

the 109 women and 7.4% of the 27 men suffered a subsequent fracture. Sander et al. [225] 

conducted a coordinator program in post-fracture osteoporosis management as an 

analysis of the cost-effectiveness of the use of coordinator. Kanis [223] and WHO study 

group [224] led an assessment of fracture risk and screening for postmenopausal 

osteoporosis.  

Besides the direct study, several studies regarding possible treatment of 

osteoporosis are conducted [227-229]. Meunier et al. [229] explored the effect of 

Strontium Ranelate on the risk of vertebral fracture in women with postmenopausal 

osteoporosis. Ettinger et al. [228] on the other hand evaluated the treatment of Raloxifene 

in a 3-year randomized clinical trial. Chesnut III et al. [227] led a study of the effects of 

oral Ibandronate administered daily or intermittently on fracture risk in postmenopausal 

osteoporosis. So far, all criteria for the research above are based on the examination of 

traditional BMD measurements.  
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The research we are doing now is to find more accurate and effective parameters 

in the diagnosis of osteoporosis, and thus it will enhance future research in the prevention 

of osteoporosis fracture, and eventually set as a part of the diagnosis criteria. 

5.2 Limitation of the Current Research  

Our current research gives two accurate, reproducible, robust and sensitive 

algorithms to predict TB strength using its architectural properties such as TB thickness, 

marrow spacing, plate/rod characterization and orientation. The experimental study using 

human cadaveric ankle specimens demostrated the accuracy, reproducibility, robustness 

and sensitivity in predicting TB strength. However, more work is needed especially on 

the clinical level, to determine the actual performance of our algorithm in osteoporosis 

diagnosis. Specifically, the current research is limited in following three aspects: 

1. The current research is limited to the “peripheral site” (tibia), and does not 

include the “central site” (hip and spine) where most dangerous in 

osteoporosis related fracture and cost most. 

2. The current research is still quite limited on the experiment level, the results 

are “statistically significant”; however, the algorithms needs more clinical 

level experiments to prove their “clinical significance”. 

3. The computation time for tensor scale is not short enough. 

Regarding the first limitation, several groups have done research about the 

relationship between the bone quality comparison between peripheral site and central site 

or use the bone quality at peripheral site as the prediction for fracture risk [230]. Siris et 

al [230-234] conducted a research between 1997 and 1999 with over 200000 ambulatory 

postmenopausal white women aged 50 or older with no previous osteoporosis diagnosis. 

Almost half of the population had previously undetected low BMD, including 7% with 

osteoporosis, and the results showed that peripheral BMD results were highly predictive 

of fracture risk. Miller et al. [231] studied the association between BMD measurements at 
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peripheral sites and subsequent fracture risk at the hip, wrist/forearm, spine, and rib in 

149,524 postmenopausal white women, without prior diagnosis of osteoporosis, and the 

results indicated that low BMD found by peripheral technologies, regardless of the site 

measured, was associated with at least a twofold increased risk of fracture within one 

year, even at skeletal sites other than the one measured. Crabtree et al. [232] studied the 

correlation between intracapsular hip fracture and peripheral quantitative computed 

tomography, showing the quality of this peripheral site bone would improve the detection 

of those at risk of hip fracture. Picard et al. [233] studied the ability of peripheral DXA 

measurement to diagnose osteoporosis as assessed by central DXA measurement, and the 

result indicated that a peripheral measurement of BMD, together with a good clinical 

evaluation of the osteoporosis risk profile of the patient, can be an useful tool for the 

diagnosis of osteoporosis in areas where central DXA is not available. Miller et al. [234] 

conducted a study about patients who may need additional central bone density 

measurements besides the peripheral site bone measurements. 

Regarding the second limitation, the results of a study can be statistically 

significant but still be too small to be of any practical value. This is of great importance 

to physicians when looking at research evidence. Various quantitative measures are used 

to decide whether a treatment effect is large enough to make a difference to a patient or 

doctor. In our study, how much improvement with the new measurement can make the 

diagnosis of osteoporosis clinically significant? To answer this question, we would need 

more practical experiments with real clinical MD-CT imaging data to determine whether 

the measurements can be clinical significant in diagnosis of osteoporosis. However, so far 

this is beyond the work of current Ph.D. study. 

As to the last limit which is a technical problem, the main time consuming part in 

the current tensor scale computation is the ellipsoid-fitting step. Although it has been 

improved, and only the axial points are computed in 3-D, it still needs about 40 minutes 

to compute a typical tibia TB patient data set, which can be improve in the later study. 
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5.3 Possible Future Research Work 

As mentioned in the previous section, the experiments and results of the current 

study only show that the research work is statistically significant, and it is necessary to 

have more clinical experiments to determine the clinical significance of the our 

algorithms. Once the algorithm is proved to be clinical significant, it would be necessary 

to establish a further clinical study as clinical trial to achieve the ultimate goal of the 

research mentioned in Section 5.1. 

Go back to the final goal of our research that we want to establish a new 

diagnoses standard for osteoporosis and osteopenia, instead of the current using BMD Z-

score. To achieve the goal, the most important step is to establish the correlation between 

the TB architectural measurements and the risk of osteoporosis fracture. This can be 

divided into three steps:  

1. Build the correlation between peripheral site measures with the central site 

measures. There are three main sites that are vulnerable for osteoporotic 

fracture: hip, spine and wrist. The problem is that the three sites are different 

from each other. The current research is focused on the tibia site, which is the 

not one of the three, so it will be necessary to build the correlations.  

2. Utilize the correlation between the BMD measures and the risk of 

osteoporotic fracture to find the correlation between architectural measures 

and the risk of osteoporotic fracture. A simple solution for initial research is 

that use the subjects with both tibia scans and whole body DXA, compare the 

architectural measures with the DXA derived BMD measure of the legs.  

3. Conduct clinical experiments to find the correlation between TB architectural 

measures and the osteoporotic fracture directly. Here, we need to take care of 

the age effect in bone loss. And also, it will be necessary to do some 

experiments will different drugs or calcium. 
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The last, we will talk about the improvement in the algorithm level. As mentioned 

in the previous section, the computation time for tensor scale is still a limitation for real 

clinical activity. Mainly improvements in two directions can be explored in the further 

research. 

1. Rebuild a new tensor scale computation algorithm, such as proposed and 

implemented by Xu [184], even though it suffers accuracy problem in the 

current TB measurement study.  

2. Conduct more clinical level experiments to find a proper trade-off point 

between the computation efficiency and the accuracy in predicting TB 

strength and thus osteoporosis diagnosis. And this work requires more 

collaboration between our group and clinical doctors. 
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